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Abstract

A geometric description of generalized Cosserat media is presented in terms of non-holonomic
frame bundles of second order. A non-holonomic G-structure is constructed by using the smooth
uniformity of the material and its integrability is proved to be equivalent to the homogeneity of the
body. If the material enjoys global uniformity, the theory of linear connections in frame bundles
permits to express the inhomogeneity by means of some tensor fields.
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1. Introduction

In Continuum Mechanics a material body B is represented by a three-dimensional dif-
ferentiable manifold which can be covered with just one chart (see e.g. [65,66]). Such a
chart @ : B —> R3 is called a configuration. It is customary to identify the body with any
one of its configurations, ®g: B — R3, called a reference configuration. A change of
configuration x = @ o & ! is a deformation.

Experience accumulated over centuries of particular theories indicates that the mechani-
cal behaviour of many material bodies is local, in the sense that the deformation evaluated
outside an arbitrarily small neighbourhood of each point of B does not affect the material
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response at that point. The first derivative of the deformation, the deformation gradient
F = Vk, is sufficient for the description of the so-called simple materials. Here Vi de-
notes the derivative which coincides with the covariant derivative in the Euclidean context.
Sometimes, we shall use this notation since it is usual in Continuum Mechanics.

A question of both theoretical and practical importance is the following: given a descriptor
of the material behaviour of a simple material body as a function of position in the body,
how can it be decided that all points of the body are made of the same material? Moreover,
after having ascertained that this is the case, are there any inhomogeneities left which
cannot be removed by a simple change of configuration? A geometric theory based on
the properties of the material response function alone was developed by Noll [73] (see
also [82-85]). A structurally based theory had been originally conceived by Kondo [55],
Bilby [4], Kroner [56], Eshelby [48] and others, as the result of a limiting process starting
from a defective crystalline structure (see also the books by Lardner [58] and Nabarro [72]).
Following essentially Noll’s and Wang’s approach, the use of G-structure theory has refined
the formulation and facilitated the derivation of specific results [31,44]. In fact, the presence
of inhomogeneities, such as dislocations and disclinations, manifests itself through the lack
of integrability of the associated G-structure.

In a sense, it may be said that the theory of inhomogeneities of simple elastic
materials is fairly well established in terms of differential geometric constructs. However,
many real materials are known to be non-simple. Granular solids, rocks, bone, animal
blood, liquid crystals, composite materials, and many other materials which are common
in nature cannot be faithfully modelled unless extra kinematic variables are taken into con-
sideration [9,47]. The first theory of such generalized media was introduced by Eugene
and Frangois Cosserat between 1905 and 1910 [16]. We refer the reader to Pommaret
[76] for an account of the life and works of the Cosserats. The Cosserats studied elastic
curves, surfaces, and three-dimensional bodies to each point of which a family of vec-
tors (or directors) is attached. More generally, a Cosserat continuum can be mathemati-
cally represented by an m-dimensional manifold 5™ and a family of n vector fields {d,}
on B™. Many of the further developments of the theory can be found in Ericksen and
Truesdell [46], Toupin [80,81], Maugin [67,69], Nowacki [74], Kroner [57], Antman [2]
and the encyclopedical works of Truesdell and Toupin [82], Truesdell and Noll [83] and
Eringen [47].

In spite of their importance, a complete theory of uniformity and homogeneity of gen-
eralized continua is not available. A correct definition of uniformity of micropolar and
micromorphic media is given in [47], but without defining or exploiting the underlying geo-
metrical apparatus so as to establish homogeneity conditions, as done by Noll and Wang
for simple media.

The geometrical apparatus necessary to develop a rigorous theory has been available for
some time. Actually, the notion of directors due to the Cosserats is closely related to the
notion of the repére mobile (moving frame) due to Elie Cartan [10]. In fact, if B™ is a
m-dimensional manifold, a set of m linearly independent vector fields on B™ is a moving
frame. If we examine how the moving frame is deformed along curves on 5™ we obtain the
notion of covariant derivative and, hence, the notion of linear connection.
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In the 1950s the second geometric ingredient for the theory was introduced. Charles
Ehresmann (see [23-27] and references therein) formalized the notion of principal fibre
bundle and studied several frame bundles associated in a natural way to an arbitrary mani-
fold: non-holonomic, semi-holonomic and holonomic frame bundles. Connections of higher
order were also introduced. The work of Eheresmann was continued by several of his stu-
dents, Libermann [59-61,63,77], Yuen [86], and others [1,52,53,70,75]. We also refer to
the recent book by Kolaf et al. [54]. On the other hand, the notion of G-structure evolves
from the works by Chemn, Ehresmann, Bemard and Libermann (see [3,13]).

In this paper, we make use of these geometrical tools to study the uniformity and ho-
mogeneity of three-dimensional Cosserat media, by which we mean a three-dimensional
continuum to each point of which three linearly independent tangent vectors are attached.
Actually, we can interpret a generalized Cosserat continuum as a three-dimensional mani-
fold plus its frame bundle. In fact, a linear frame at a point X of B is a basis of the tangent
space Tx B3, i.e., a set of linearly independent tangent vectors at X. In order to determine the
deformation of each tangent space it is necesssary to know how a basis of it is deformed.
Thus, a configuration of a Cosserat medium would be an embedding of FB (the linear
frame bundle of B) into the linear frame bundle FR* of R? if we suppose that we deal with
three-dimensional continua. The embedding of principal bundles induces an embedding
between the base manifolds, 18 and R3. In this way, we recover the notion of configuration
for simple materials. A deformation is a change of configuration, which is itself an isomor-
phism of principal bundles. If we fix an arbitrary configuration as a reference configuration,
we obtain that a deformation is an embedding of FB into FR3.

The constitutive elastic law is now written as

W = W(jtk), (1)

where i is the embedding and j }( & denotes the 1-jet of &, or, in other words, the gradient
of the deformation at a point X.

The constitutive equation (1) permits us to associate to each point of B an isotropy group
(the group of material symmetries) as in the case of simple materials. If we assume that the
medium enjoys uniformity then the isotropy groups at different points may be related by
conjugation. If, further, the uniformity is smooth then we can construct a reduction of the
non-holonomic frame bundle 28 of B, i.e., a second-order non-holonomic G-structure on
B, where G is a subgroup of the second-order non-holonomic group G2(3). This kind of
geometric structure was studied by Libermann, Oproiu, Yuen, Kolaf [52,53,62,63,70,75]
and others.

The associated G-structure is obtained by using an algebraic-geometric object provided
by the uniformity property, a Lie groupoid (see [64] for an excellent reference on Lie
groupoids). In fact, the collection of material 1-jets of local isomorphisms connecting dif-
ferent points is a groupoid, its smoothness corresponding to the existence of local sections,
which is equivalent to the Lie groupoid character.

As a particular case, second-order holonomic G-structures are obtained, which corre-
spond just to materials of second grade. Thus, we obtain in a very natural way a general
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scheme including Cosserat media (non-holonomic) and materials of second grade
(holonomic).

This geometric formulation also provides a natural extension of the continuous theories
of inhomogeneities of Noll and Wang [8,68,73,83,85]. In fact, a non-holonomic parallelism
induces a linear connection and also two ordinary parallelisms, which in turn define two
linear connections on B. The set of three linear connections defines two tensors: a torsion and
a tensor of difference of connections. The local homogeneity of the material is equivalent
to the vanishing of these inhomogeneity tensors. This result extends the one obtained by
the authors for second grade materials [17-20] (see also {14,30-38]).

It should be noted that a more general geometrical model for so-called continua with
microstructure [9,47] can be conceived as follows. A continuum with microstructure is a
fibre bundle E over an m-dimensional continuum B with typical fibre F and projection
7w E — B. Bis said to be the macromedium, F is the typical micromedium and the fibre
Ex = 7 1(X) is the micromedium attached at a point X € B. The simplest case is a trivial
bundle £ = B x F — B. Slightly more complicated models are the ones of rods and
shells; E is the normal bundle of a one-dimensional (resp. two-dimensional) continuum 3
into R3 (see [41-43]). Of course, our mathematical model for Cosserat media is a particular
case of media with microstructure. The aim of this paper is to study Cosserat media, since
they enjoy a richer geometrical structure. In [22,39,40] we have studied the general model
of media with microstructure.

This paper is divided in two parts: a geometric part and the application to Cosserat media.
In the first part, which consists of nine sections, we recall some definitions and results on
linear frame bundles, non-holonomic, semi-holonomic and holonomic bundles of second-
order as well as the corresponding structure groups. We notice that these concepts are known
(but not extensively) to differential geometers. For this reason we shall explain them in some
detail. On the other hand, we introduce a classification of the Lie subgroups of the second-
order non-holonomic group G2(n) as well as of the Lie subgroups of the second-order
semi-holonomic and holonomic group Gz(n) and G2(n), respectively. Since there exists
a complete classification of the Lie subgroups of the special linear group s[{n, R) (see
[83,85], for instance) we have a classification of the Lie subgroups of G2(n) whose second
projection onto G/ (n, R) is a Lie subgroup of s((n, R). We shall use the formulation of jets
throughout the paper. For the sake of completeness, we include a brief review of jets and Lie
groupoids. The relationships between linear connections and invariant sections of the non-
holonomic, semi-holonomic and holonomic frame bundle of second-order of a manifold
M are established. Most of the results are known (see {15,49,51,52,70,78,79]), but some
are new or presented in a new light (e.g. the notion of prolongability of a non-holonomic
second-order G-structure).

The second part of the paper is devoted to the application of the results of the first
part to a geometrical model for Cosserat media. We introduce the notions of configura-
tions and deformations of Cosserat continua. The elastic constitutive equation is given and
the uniformity property is established. The group of material symmetries is introduced.
We also give a first geometrical characterization of the homogeneity in terms of the inte-
grability of the associated non-holonomic second-order G-structure. This non-holonomic
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second-order G-structure is obtained by introducing a crystal reference. The behaviour of the
fields of uniformity under the changes of crystal reference and reference configuration are
carefully studied. Then we study the case of a Cosserat continuum enjoying global smooth
uniformity. Finally, particular cases of Cosserat continua are studied and their integrability
is characterized by means of some inhomogeneity tensors.

Part I. Geometric background on frame bundles
2. Principal bundles

Let M be a manifold and G a Lie group. Roughly speaking, a principal bundle P over M
with structure group G is obtained attaching a copy of G to each point of M. More precisely,
P is a manifold on which G acts by the right and satisfying the following conditions:

(i) The action of G is free, i.e., ua = R,(u) = u, u € P, implies a = e, where e is the

identity of G.

(i) M = P/G, ie., M is the quotient space of P by the equivalence relation induced
by G. In other words, M is the space of orbits. Moreover, the canonical projection
m: P — M is differentiable.

(iii) P is locally trivial, i.e., P is locally a product U x G, where U is an open set of
M . More precisely, there exists a diffeomorphism @ 2k (U) — U x G, such that
& (u) = ((u), p(u)), where the mapping ¢ : 7~ (U) —> G satisfies p(ua) = ¢(u)a
forallu € 7='(U),a € G.

A principal bundle will be denoted by P(M, G), or simply 7 : P —> M if there is no
ambiguity as to the structure group G. P is called the total space, M the base space, G
the structure group, and 1 the projection. The closed submanifold 7~ (x), x € M will be
called the fibre over x. For a pointu € P, we have ol (x) = uG,wherem(u) = x,and uGG
will be called the fibre trough u. Every fibre is diffeomorphic to G, but this diffeomorphism
depends on the choice of the trivialization.

Given a manifold M and a Lie group G the product manifold M x G is a principal bundle
over M with projection pr;: M x G — M and structure group G, the action given by
(x,a)b = (x,ab). M x G is called a trivial principal bundle.

A homomorphism of a principal bundle P’(M’, G’) into another principal bundle P
(M, G) consists of a differentiable mapping @ : P —> P and a Lie group homomorphism
¢:G" — G such that ®(w'a’y = ®w)Hp(a’) forall u’ € P’ and ¢’ € G'. Hence, @
maps fibres into fibres and it induces a differentiable mapping ¢ : M’ —> M by ¢(x') =
(P (1)), where u' is an arbitrary point over x’. A homomorphism @ : P — P is called
an embedding if ¢ : M' —> M is an embedding and if ¢ : G’ — G is injective. In such a
case, we can identify P’ with @ (P"), G’ with ¢(G’) and M’ with ¢ (M’) and P’ is said to
be a subbundle of P.If M’ = M and ¢ = idy, P’ is called a reduced subbundle and we
also say that G reduces to the subgroup G'.

A homomorphism @ : P’ —> P iscalled an isomorphism if there exists ahomomorphism
of principal bundles ¢ : P —> P’ suchthat ¢ o @ = idp and @ o ¥ = idp.
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3. Frame bundles

Let M be an n-dimensional differentiable manifold. A linear frame at the point x is a
linear isomorphism z: R” — T, M. Alternatively, z may be viewed as an ordered basis
(z1,...,zn} of Ty M, with z; = z(r;), where {ry, ..., rn} is the canonical basis of R”. There
exists a third way to interpret a linear frame by using the theory of jets. Indeed, a linear
frame z at x may be considered as the 1-jet jOl.X¢> of a local diffeomorphism ¢ from an open
neighbourhood of 0 in R” onto an open neighbourhood of x in M such that ¢(0) = x. We
have 7 = d¢(0):R" — T M.

We denote by F'M the set of all linear frames at all the points of M. As is well-known, F M
is a principal bundle over M with structure group Gl(r, R) and projection myy : FM —>
M defined by nM(j(}‘x(j)) = ¢(0) = x. We denote by e the element jol‘oian e FR". If
Y : N — M is alocal diffeomorphism from an n-dimensional manifold N into another n-
dimensional manifold M, we denote by Fi : FN — F M the local isomorphism induced
from i, and defined by

Fy Go.g9) = Jo.y@oy¥ ©9)-

Let ¥ : FR" — FM be a local isomorphism of principal bundles such that its domain
contains e; and the induced isomorphism on Lie groups is the identity. Then we have
V(za) = ¥(z)aforall z € FR"” and forall a € Gl(n, R). We denote by ¥ : R" —> M the
local diffeomorphism induced by ¥. We recall that yr o rge = s o W. The collection of all
1-jets j; g, ¥ is a manifold which will be denoted by F2M. Of course, j} 4, ¥ can

be identified with a linear frame at the point ¥ (e;) since d¥ (e1) : T, (FR") = Rr s
Ty (¢,)(F M) is alinear isomorphism, and we have F*M C F(FM). There are two canonical
projections 7?12 :F?M — FM and 7?: F?M —> M given by ﬁlz(jel.,we,)q’) = Y(er)

and 772 (jell e ) = ¢ (0), respectively. Of course, we have 72

=M o7_r12. It can be shown
that F?M is a principal bundle over F M with canonical projection 7?% and structure group
G%(n) consisting of all 1-jets of local isomorphisms of FR" into FR" with source and target
e1. Hence, G3(n) is a Lie subgroup of G/(n+n?, R) acting on F2M by composition of jets.

We also have that F2M is a principal bundle over M with canonical projection 72 and
structure group G2(n). The group Gz(n) is the fibre of F‘z(R") over0 e R, ie., (‘;2(”) =
@H~10).

An alternative description of the Lie group G%(n) is the following. It consists of all
1-jets j ;I‘W(el)w of local isomorphisms ¥ : FR? — FR" such that the induced map
¥ :R" — R” maps 0 into 0. The multiplication is given by composition of jets:

.1 -1 .1
Ueywi (e Ueptaen)¥2) = Je wyaniery W1 © ¥2).

The action of G*(n) on F2(M) is also given by composition of jets. The bundle F2M will
be called the non-holonomic frame bundle of second order and its elements will be called
non-holonomic frames of second order. Notice that there exists a canonical isomorphism
F2R" = R x Gz(n). In fact, define a global section s : R” — FZR" as follows:

-1
s(x) = jfl.ll’x(ﬂ)wx’
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where ¥, (s, s;) = (r' +s', s;),x = (r') e R", and (s, s}) being the canonical coordinates
on FR". So, a non-holonomic frame of second-order u at a point x € R" may be written in
a unique way as ¥ = s(x)g, where g € G2(n). We have thus obtained a principal bundle
isomorfism F2R" = R" x G*(n). Now, if G is a Lie subgroup of G?(n), we can transport
R" x G by this isomorphism to obtain a G-reduction of FZ(R").

Definition 3.1. Let G be a Lie subgroup of G2(n). A G-reduction (M) of F2(M) to
the group G will be called a second-order non-holonomic G-structure.

Hence, the G-reduction of F2R” obtained above is a second-order non-holonomic G-
structure on R" which will be called the standard flat (or integrable) second-order non-
holonomic G-structure.

Definition 3.2. A second-order non-holonomic G-structure wg (M) on M will be called
integrable if it is locally isomorphic to the standard flat G-structure on R”.

Notice that an integrable second-order non-holonomic G-structure is not necessarily
holonomic (see Definition 3.7). We shall give a weaker notion of integrability in Section 7.

A second-order non-holonomic trivial structure is called a non-holonomic parallelism of
second order. Let us recall that a linear parallelism on a manifold M is just a global section
of the linear frame bundle F M, or, alternatively, a usual {1}-structure. A direct computation
shows that a non-holonomic parallelism of second order is, in fact, equivalent to give a
global smooth section of 72: F°M — M.

Next, we shall describe two particular sub-bundles of F2M. Consider the second-order
non-holonomic frames jell,lll(e])lp such that ¥ is admissible, i.e., ¥ (e]) = j&w(o)l/f. Such

a frame will be called a semi-holonomic frame of second order and the set EF2M of all these
frames is called the second-order semi-holonomic frame bundle of M. We have canonical
projections #72 : FM — FM and #2: F2M —> M, given by the restrictions of 77 and
2, respectively. As in the case of second-order non-holonomic frames we have that £2M
is a principal bundle over FM with canonical projection ﬁlz and structure group G%(n)
consisting of the 1-jets of all admissible local isomorphisms of FR” into FR” with source
and target e1. As above, we deduce that G%(n) is a Lie subgroup of GI(n + n?, R) acting
on F*M by composition of jets.

F’Misalsoa principal bundle over M with canonical projection 72 and structure group
G2(n). The structure group G2(n) is defined by G2(n) = (#2)~1(0).

An alternative description of the Lie group G2(n) is the following. It consists of the
1-jets jell.w(el)lll of all admissible local isomorphisms ¥ : FR" — FR”" such that the
induced map ¥ :R"? — R” maps O into 0. The multiplication and right action are
given again by composition of jets. It is easy to prove that #2: F2M —> FM (resp.
#2:F?M — M)isa principal sub-bundle of ﬁlz :F?M — FM (resp. 7%: F*M —>
M). Notice that there exists a canonical isomorphism F2R" = R" x G2(n). If G is a
Lie subgroup of G2(n), then we obtain a G-reduction of F2R" which is isomorphic with
R" x G.
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Definition 3.3. Let G be a Lie subgroup of Gz(n). A G-reduction d)G(M) of ﬁz(M) to
the subgroup G will be called a second-order semi-holonomic G-structure.

Hence, the canonical G-reduction of F2R" defined above is a second-order semi-holo-
nomic G-structure on R" and it is called the standard flar (or integrable) second-order
semi-holonomic G-structure.

Definition 3.4. A second-order semi-holonomic G-structure d)é(M) on M will be called
integrable if it is locally isomorphic to the standard flat G-structure R” x G.

A second-order semi-holonomic trivial structure is called a semi-holonomic parallelism
of second-order. A semi-holonomic parallelism of second order is, in fact, a global smooth
section of 72 : F2M —> M.

Remark 3.5. Notice that there exists a canonical projection 77 : F2M —> FM defined
by ﬁlz(jell.uI(e,)W) = jol_w(o)l//. Indeed_, r?lz is nothing but the restriction of the canonical
projection gy : F(FM) — FM to F2M, and so it is a principal bundle homomorphism.
It directly follows from the definitions that a second-order non-holonomic frame z is semi-
holonomic if and only if #7(2) = 77 (3).

Finally, we shall introduce a new principal sub-bundle of F2M . Consider the second-order
non-holonomic frames jell .w(el)llf of M such that ¥ = F. Hence, ¥ is admissible. Such a

frame will be called a holonomic frame of second order and the set F2M of all these frames
is called the second-order holonomic frame bundle of M, or, simply the second-order frame
bundle of M. We get canonical projections n?: F°M —> FM and n°: F?M — M. We
have that FZM is a principal bundle over FM with structure group Gf(n) consisting of all
1-jets of local isomorphisms of the form Fr, where ¢ : R" — R” is a local diffeomor-
phism such that ¥ (0) = 0. Hence, G*(n) is a Lie subgroup of Gl(n + n?, R) acting on
F?M by composition of jets.

F2M is also a principal bundle over M with canonical projection 772 and structure group
G?(n). The structure group G*(n) is defined by G*(n) = (7%)~1(0).

Alternatively, we can easily see that the Lie group G*(n) consists of all 1-jets j, ¥
of local isomorphisms ¥ : FR" — FR” of the form ¥ = Fvy, v :R" — R". The
multiplication and right action are given again by composition of jets. We deduce that
7112 :F?M — FM (resp. 7°: F°M — M) is a principal sub-bundle of 7'?12 FM —
FM (resp. #%: F’M — M). Notice that FZR" = R" x G%(n). If G is a Lie sub-
group of G*(n), then we obtain a G-reduction of FZR" which is isomorphic with
R" x G.

Definition 3.6. Let G be a Lie subgroup of G%(n). A G-reduction wg (M) of F2(M)
to the subgroup G will be called a second-order holonomic G-structure (or second-order
G-structure, for the sake of simplicity).



M. Epstein, M. de Ledn/ Journal of Geometry and Physics 26 (1998) 127-170 135

Hence, the canonical G-reduction of F2R" defined above is a second-order G-structure
on R" and it is called the standard flat (or integrable) second-order G-structure.

Definition 3.7. A second-order G-structure wg (M) on M will be called integrable if it is
locally isomorphic to the standard flat G-structure R" x G.

A second-order holonomic trivial structure is called a holonomic parallelism of second
order. A holonomic parallelism of second order is, in fact, a global smooth section of
2 F’M — M.

A direct computation shows that an integrable non-holonomic parallelism of second order
is in fact holonomic.

Summarizing we have the following two sequences of Lie subgroups:

G*(n) € GX(n) € G*(n) C GI(n,R) x Gl(n +n* R),
Gi(n) € Gi(n) € Gi(n) € Gl(n +n* R,
and the following two sequences of principal bundles:
FM C F°M C F*M C F(FM)
over FM, and
F*M C F?M c F*M

over M.

Remark 3.8. There exists an alternative definition of non-holonomic frames (see [75]).
Consider a differentiable mapping ¢ : U — FM defined on some open neighbourhood
of 0 in R” such that mys 0 ¢ : U —> M is a diffeomorphism. Then the 1-jet j(}‘d}(o)cp isa
non-holonomic frame of second order at x = m(¢(0)). In fact, given ¢ we define a local
principal bundle isomorphism @ : FR" — FM over U by putting @(r, R) = ¢(r)R,
where r = (#/) e R" and R = (R;) € Gl(n, R). Thus, jell.d>(6|)¢ defines a non-holonomic
frame at x. and a fortiori a linear frame at ¢(0) € FM. A simple computation shows that
every non-holonomic frame of second-order may be obtained in this way. In this formulation,
the condition of semi-holonomicity is equivalent to the following one:

$0) = jo_ (Tm o $).

The holonomicity condition is given by

() = f,-l,(nMo¢)(r>(”M o¢) forallr € U.
4. Local descriptions
All the notions introduced in the previous section are of global nature. However, we shall

now introduce local coordinates in our picture. In fact, the local description of all these
bundles will be useful in our study.
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Let (x') be a local coordinate system defined on some open subset I/ on M. We denote
by FU the open subset of FM defined by FU = (er)‘1 (U). Notice that our notation is
consistent, since FU is in fact the linear frame bundle of U. The following identities and
notations are the obvious ones:

Flu=@»"'w, Fu=@»H"\w),
=H"'W),  FFU) = (epm)” U).
The induced coordinates are denoted as follows:
FU: (', x)),
F(FU): (xi,x’:;xfj,xfjk,xj’:.k,xj’:‘k,),

277. [ S i i i,
F2U: (o, J’ X jr X jk “O’xj,k’xj.kl“xkajl)v

. . )
F?U. xj,xj—x xjk—O k,le-kl:x,’(csﬂ),

277. i .
F<U: (x,xj,x_j—x x k—O xjk, jkl_'xka./l) xk—xkj

For sake of simplicity, the local coordinates on FZM, F2M and F2M will be written as
follows:

FrU: (. x, fj,xj’i_k), FrU: (' xl,xf ),
FPU: (. xfxl), x = xi;.
and the canonical projections may now be written as follows:

i

Tpa( xf o x ) xg) = O x), ARG L ag ) = o),
#20xi, x xj, jk)_(x) ﬁl(x’,x’.,x.’j,xj’:‘k)=(x',xfj),

nl(x k)_(x x) 720 x k)_(x)

zrlz(xi,xj’-,xj’-k) = (x’,x/’-), 72(xt, k) = (x), JTM(xi,x}) = (x").

Using these notations we can write the elements of the different Lie groups G2(n), G2(n),
G%(n), G3(n), G?(n) and G(n) as follows:

Glin+n*,R): A= (A", AT, Al L Al ),
G’(n): A= (AL A", A,
G*(n): A= (Al A,

G*(n): A= (A}, A}, A=A,
Gin): A= (A AL,
Gi): A= (A%,

Gi(n): A= (A%, Al = A,
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and the corresponding multiplications are then given by

G*(n): (AB)} = A;;Bj’f, (AB)'; = A%, Bk (AB),, = ALB], + A, ;B] BY,

G (n): (AB);' = A, B}, (AB)’k_A, jk+A’,SBj’Bi,
G*(n): (AB)} = AkBk (AB)), = A, By +A’,SBJ’Bk,

Gi(m): (AB); = A",BY, (AB)}, = B}, + Aj B
Gh@:(AByk— k+A”,
Gi(n): (AB);szjk—i—Aj

From Definitions 3.2, 3.4 and 3.7 and the above local expressions, we directly obtain the
following:

Proposition 4.1. A second-order non-holonomic (resp. semi-holonomic, holonomic) G-
structure wg (M) (resp. G-structure é)a (M), G-structure wg(M)) on M is integrable if
and only if for any point x € M there exists a local coordinate neighbourhood U with local
coordinates (x') such that the local section Q(x') = (x', 1, 1, 0) takes values into ws(M)
(resp. o5 (M), wg(M)).

Denote by B2(n) the vector space of the bilinear mappings from R” x R” into R”. Hence,
there exists a canonical inclusion j : GI(n, R) — G2(n) = Gl(n, R) x GI(n, R) x B%(n)
defined by j(A) = (A, A, 0). Notice that j is in fact a Lie group homomorphism since
J(AB) = j(A)j(B).

Denote by S(n) C B?(n) the vector subspace of symmetric bilinear mappings. We have
a canonical inclusion (denoted by the same letter) j : Gl(n, R) — Gi(n) = Gl(n,R) x
52(n) defined by j(A) = (A,0). In fact, j: Gl(n,R) —> Gz(n) is the restriction of
j:Gl(n, Ry — G%(n) taking into account that Gz(n) (and Gz(n) too) may be viewed as
a Lie subgroup of Gz(n) by identifying (A, o) with (A, A, o).

5. More about the Lie groups Gz(n), Gz(n) and Gz(n)

In this section we shall describe in an alternative way the Lie groups G2(n), G2(n) and
G?*(n). We shall also give a classification of their Lie subgroups.

First of all, let us recall the definition of G%(n). A typlcal element is a 1-jet ]el W(el)lll
such that ¥ (0) = 0. In local coordinates we have ¥ (r! ,rj) = (Y (), 'P’(r", l)rjk),
where (r9, rg) denotes the canonical coordinates in FR". Hence, je]| Wiey) W defines a triple
(A, A', @) by taking

A=(AD.,  Aj=w0.D, A=A,

A 12
A" = "/’ 0. a=(@)). o= Er—;(m.

Thus, we can interpret A and A’ as linear automorphisms of R”. In fact, A is the linear
automorphism of R” defined by ¥ (0, 1), which is a linear frame at 0 € R” taking into
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account the identification TpR" = R". On the other hand, A’ is the linear isomorphism
dy(0):R" = ThR" — R" = ThR". Finally, « is the bilinear mapping « : R" x R" —>
R" defined by «(u, v) = a(u)(v), where & : R" — End(R") is the differential of the
mapping llfji evaluated at 0.

If we put

A=A, Ap=A"%r.  alj ) =dn,

we deduce that the group G2(n) may be identified with the product GI(n, R) x Gl(n, R) x
B?(n). The multiplication is now given by

(A, A',a) (B, B, B) = (AB, A'B’, AB + (B, B)), 2)
where
AB(u, v) = A(B(u, v)), a(B, B))(u,v) = a(Bu, B'v)

for all u, v € R". Notice that this multiplication is just the one given by Eringen (see [47],
and [1,15] for the holonomic case).

The neutral element is (1, 1, 0) and the inverse element of an arbitrary element (A, A, @)
is (A7, A7 —A oA AT,

Since G2(n) = Gl(n,R) x Gl(n,R) x B2(n), we have three canonical projections
denoted by pri:G?*(n) — Gl(n,R), prr: G*(n) — Gl(n,R) and pry:G%(n) —
B%(n).

From (2) we deduce that pr; and pr; are Lie group homomorphisms. In fact, pry (resp.
pr3) is induced by the canonical projection ﬁf (resp. ﬁlz). However, pr3 is not a Lie group
homomorphism. Therefore, an arbitrary Lie subgroup G of G2(n) may be written as follows:
G = (G1, G2, X), where G| = pri(G) and G = pry(G) are Lie subgroups of GI(n, R),
and ¥ = pr3(G) is a subset of B2(n). Given two arbitrary elements A € Gy and A’ € G»
we denote by X4 41y the subset of B?(n) defined by

Zaay = (o€ B*n) | (A, A, a) € G).

It is easy to check that X 1) is an additive subgroup of B2(n) and (1, 1, X' 1y) is a Lie
subgroup of G2 (n).

Proposition 5.1. For an arbitrary element (A, A’) € G| x G, there exists a one-to-one
correspondence between X1 1y and X4 a»).

Proof. Let (A, A’, ap) be an arbitrary element of G.If(1,1,7) € (1,1, Za.1y) we de-
duce that (A, A", ap)(1,1,7) = (A, A’, At + «p). Hence, we have obtained a mapping
¢: X1 —> Xa.4 defined by ¢(7) = AT + ap.

Conversely, since the product (A, A, ag) " '(A, A", @) = (1,1, A~ (@ — ag)) belongs
to (1, 1, X(.1y) for each (A, Al a) e G then we obtain a mapping ¥ : X4, 4y — XL
defined by ¥ (a) = A~ (o — ag).

A direct computation shows that ¢ o ¢ = id and ¢ o ¥ = id. O
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Consider the second-order semi-holonomic and holonomic groups Gz(n) and G%(n),
respectively. In the first case, we have an identification Gz(n) = Gl(n, R) x B%(n), since
A’ = A.In the second case, we have an identification G*(n) = Gl(n, R) x $%(n). The
multiplication (2) reads now as

(A, @) (B, B) = (AB, AB + a(B, B)). 3

The neutral element is (1,0) and the inverse element of an arbitrary element (A, &) is
(A7, ~A7Te(A7!, A7), We denote by pri:G2(n) — GI(@,R), pry:Gi(n) —
B%(n), pri :G*(n) — Gl(n,R) and pri: G*(n) — $2(n) the canonical projections.

From (3) we deduce that pr| is a Lie group homomorphism. However, prs is not a Lie
group homomorphism. Therefore, an arbitrary Lie subgroup G of (*;2(") (resp. G of G%(n))
may be written as follows: G = (G, %) (resp. G = (G. X)), where G = prl(f}) (resp.
G = pri(G)) is a Lie subgroup of Gl(n.R), and ¥ = pr3(G) (resp. £ = pr3(G)) is
a subset of B%(n) (resp. S?(n)). Given an arbitrary element A € G we denote by X4 the
subset of B%(n) (resp. $%(n)) defined by

Ta={eeB*n) | (A,a)e G}  (resp. T4 = {a € SEm)|(A, @) € G)).

It is easy to check that X is an additive subgroup of Bz(n) (resp. 52 (n))and (1, X)) isa
Lie subgroup of G*(n) (resp. G2(n)).
The following result is proved in a similar way than in Proposition 5.1.

Proposition 5.2. Foranarbitrary element A € G there exists a one-to-one correspondence
between Xy and X 4.
6. Subgroups of G>(n)

Next, we shall give a classification of the Lie subgroups of G2(n).

6.1. Toupin subgroups

Let Gy and G be two arbitrary Lie subgroups of GI/(n, R)and (1, 1, &) € Gz(n). A direct
computation from (2) shows that (G, G2, 0) is a Lie subgroup of Gz(n). The conjugate
subgroup of (G, G2, 0) by the element (1, 1, @) will be called a Toupin subgroup. We have

(1. 1,a)(G1, G2,0)(1, 1, &)~ " = (G1, G2, (G, Ga) — G 1)
with the obvious notations.

6.2. Generalized Toupin subgroups

IfG = (G|,Ga, X)isa Toupin subgroup, we have X(; 1, = {0}. Hence, we introduce
the following definition. A subgroup G = (G, G2, X) for which 2.y = (0} will be
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called a generalized Toupin subgroup. From Proposition 5.1 we deduce that X4 41 is also
a singleton.

Of course, a Toupin subgroup is a generalized Toupin subgroup. However, the converse
is not true, as the next result proves.

Proposition 6.1. Every one-parameter subgroup G of G*(n) is a generalized Toupin
subgroup with exception of the one-parameter subgroups of the form expt(0, 0, o),
a # 0. Furthermore, there exist one-parameter subgroups which are not Toupin subgroups.

Proof. The one-parameter subgroups of G2(n) are in one-to-one correspondence with the
tangent vectors at (1, 1, 0), or, in other words, with the Lie algebra g2(n) of G2(n). Let
(A, A’, @) be an element of g%(n) such that A and A’ do not simultaneously vanish. Then
the one-parameter subgroup determined by (A, A’, @) is

expt(A, A, a) = (exptA,exptA’, ¢(t, A, A, @),

where ¢ : R —> B?(n). Then Z(expra.exprany = (@(t, A, A, @)}, and thus {expt (4, A,
«)} is a generalized Toupin subgroup.

Suppose now that expz(A, A’, @) is a Toupin subgroup. Then it must be the conjugate
subgroup of some (G, G, 0) by an element of the form (1, 1, 8):

expt(A, A @) = (1,1, $)(G1, G2, 0)(1, 1, ),
or, equivalently,

(G1,G2,0) = (1,1, ) ' expr (A, A", a)(1, 1, B).
We obtain

(G1,G2,0) = (exptA,exptA’, (exptA) B + ¢(t, A, A, @)

— BexptA, exptA)).

Hence,

(exptA)B + ¢(t, A, A", ) — BlexptA,exptA’) = 0. (4)
If we differentiate (4) with respect to ¢ at t = 0, we deduce

AB+a—B(A, A) =0. (5)

Since A, A" and « are arbitrary, suppose that A = A’ = | and @ # 0. Thus, from (5) we
have @ = 0, which is a contradiction.

Moreover, there are one-parameter subgroups which are not generalized Toupin sub-
groups. For instance, we have exp?(0, 0, ) = (1, 1, ta). Then, if ¢ # O (in which case
exp t(0, 0, 0) is the trivial subgroup (1, 1, 0)) we deduce that (1, 1, ta) is not a generalized
Toupin subgroup. O

Remark 6.2. The Toupin subgroups are, therefore, rather the exception than the rule.
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6.3. Conjugate subgroups of (1,1, X1 1y)

If (1, 1, X'(1,1)) is a subgroup of G2(n), then 21,1y is an additive subgroup of B%(n). The
additive subgroups of an Euclidean space R™ have been completely classified by Morris [71].

As we know (I, 1, Xy 1y) is closed if and only if X i) is a closed additive subgroup
of B%(n). Since we are primarily interested in closed subgroups of G2(n) we only need to
classify the closed subgroups of B?(n). Notice that B?(n) is isomorphic as a vector space
to R, where m = n>.

Now, we recall the results of Morris [71]. If A is a subset of R™ we denote by spr(A)

the span of A over R, i.e., the subgroup
spr(A) = {t1a1 +- -+ tsas, | t1,...,ts € R, s is a positive integer}.

Notice that spr(A) is a vector subspace of R™. Then we define the rank of A to be the
dimension of spr(A). Morris has proved the following result (see [71, Theorem 6, p. 33]):

Theorem 6.3. Let X be a closed additive subgroup of R™. If the rank of X is r, then X is
isomorphic to RP x 7" =P, where | < p < r. If X is discrete we have ¥ = Z7".

Hence the closed subgroups of Bz(n) ~ R’ are
— discrete subgroups Z”,
— vector subspaces R,
— or mixed subgroups R? x Z"77.
Consider the conjugate subgroups of (1, 1, X 1)) by an arbitrary element (A, A", 8) €
Gz(n). Then we obtain

(A, A, B) (1,1, Za A, A, ) = (1,1, A% n(A™!, A7),

Thus the element B is not relevant for conjugation of subgroups of the form (1, 1, X 1y).
Hence we shall only consider the conjugate subgroups obtained by conjugation of
(1,1, X(1.1)) with two elements A, A’ € Gl(n, R).

A similar classification can be given for the subgroups of G*(n) and G2(n), but we omit
here the details. Indeed, we have
— Toupin subgroups:

(G, (G, G)—Ga), where G is asubgroup of G/ (n, R) and o € Bi(n) (resp.a € S2(n));
— generalized Toupin subgroups:

(G, %), where G is a subgroup of G/(n, R) and X} = {0};

— subgroups of the form (1, AX|(A™!, A™1)), where A € GI(n, R) and X is an additive
subgroup of Bz(n) (resp. S2(n)).

7. Second-order frame bundles and linear connections

There exists a close relation between linear connections on a manifold M and invariant
sections of the second-order non-holonomic, semi-holonomic and holonomic frame bundles
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over the linear frame bundle FM of M. In fact, roughly speaking, a non-holonomic frame
of second order is a horizontal space of a linear connection. In this section we shall briefly
recall the main results.

7.1. Sections of F*M

Let v be an invariant global section of the second-order non-holonomic frame bundie
F2M over FM,iec.,y: FM — F?M such that

7loy =idry,  y(zA) =y (2)j(A) = y(2)(4, A,0),
Vze FM, VAe€ Gl(n,R).

In local coordinates we write y (x', x;) = (x', x;, y"‘j (x4, x), yj"k(x”, x)).
The invariance of y implies the following identities:
Y X AD) = VAL v X AD) = ATAL (©)

The section y defines a connection in the principal bundle F M as follows. Suppose that for
an arbitrary point z € FM we have y(z) = jell.lll(enlp’ where ¥ : FR" — FM is alocal
isomorphism, ¥ (e}) = z. Hence, ¥ is locally writtenas W (r', r}) = (' (r*), ¥/ (r*, Drf).
Hence, we have a well-defined mapping & :R" — FM, @) = ¥(r,1) forall r €
R". In local coordinates we have @ (r) = (' (r*), ¥} (r*, 1)). Here (r“, r{) denotes the
canonical coordinates in FR". Now, we define a vector subspace at the point z by taking
H. = do0)(THR").

In local coordinates we obtain

3 i 8 Y 9 B 9
ddO)| — | ="+ — + —L — =y — +y, —.
( )(ark) ark 9xi + ark Bx; Yk dxi T Vik ax;
Thus, the vector subspace H. is generated by the basis

i 3 i 3
Xk =V 57 Tk 57
J

These vector subspaces are horizontal (i.e. they are complementary to the vertical subspace
at this point). Therefore, we obtain a smooth distribution H on F'M and hence a connection
I’ in the principal bundle mys : FM — M. Furthermore, this connection is linear because
the horizontal distribution is invariant by the action of Gl(n, R).

Next, we shall compute the Christoffel components of I™. First, notice that the local vector
fields

Y, = HE X, =

IV
+ o v e—

r i
ax ax;

form a local basis of H. Taking into account that the horizontal lift of 3/9x" to FM with
respectto I is
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a3 D .0
= - F X‘-I—T,
ax’ ax’ raty axj’,

we deduce that

Frit = _)’ji_k(x_l)yj()’“){(r,

where (x")j denotes the inverse matrix of (x}). Observe that, in fact, I/, does not depend
on the choice of xj'

7.2. Sections of M

Now, let us suppose that y takes values into F2M, or, in other words, y is a global
invariant section of the second-order semi-holonomic frame bundle F2M over FM, ie.,
Aoy =idand y(zA) = y(w)j(A) forallz € FM, A € Gl(n, R).

The section y is in particular a global invariant section of F2M and hence it induces a
connection I in FM,

If we write y (x', x;) = (x', x;, yj" x, xp) = xj’ y}_k(x“, x3)), then the vector subspace
H;, atalinear frame z € F M, is generated by the basis

]

-t
ij

i d i
Xk :xk 5;-*-)/!'1(

Proceeding as above we obtain the Christoffel components of I':
Iy ==y /ey

where (x“); denotes the inverse matrix of (xj’:).

Conversely, if I” is a linear connection on M, then we can construct a global invariant
section y : FM —> F2M as follows.

Let z € FM be an arbitrary linear frame at a point x € M. Denote by H, the horizontal
subspace defined by I” at z. If we consider local coordinates (x’) on M then a local basis
{Y:} of H_ is given by

0 i a0
Yk =t W — Fk.axj @,
J
where [ k’ .. are the Christoffel components of I” in the given coordinate system. We now
change this basis to the following:

d - d
_ Uk _ Wk R ali a k
[Xr A 3x;

This new basis of H; may be completed to a basis of the whole tangent space T,(FM) by
taking the standard basis of the vertical subspace at z, namely
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In fact, {X{} are the fundamental vector fields induced by the canonical basis of the Lie
algebra gl/(n, R) of Gl(n, R).
Thus, we have obtained a linear frame z of FM at the point z which may be locally
represented in induced coordinates as follows:
ZZ(X ’xj9x x_]k_O yjk - Frisx]:x;’x_;,kl:xlisjl)'
Therefore, 7 is a second-order semi-holonomic frame at z and we obtain a global invariant
section y : FM —> F?M locally defined by y (x', x;) = (xf, x}, yj{k(x“, xp)).

Remark 7.1. We canobtain y from I in adifferent way asfollows. Denoteby e : Ty M —>
H, the inverse map induced by the connection and suppose that 7 = jolqb. « can be realized
by alocal sectiono : M — FM,ie.,o(x) = zanddo(x) = «.

Hence we consider the local bundle isomorphism @ (r4, rf) = (¢' (r?), o} (¢ (r“))r;‘). A
direct computation shows that je'] D =2z

7.3. Sections of F*M

Now, let us suppose that y takes values into F*M, i.e., y is a global invariant section
of the second-order frame bundle F?M over F M. From the above sections, we deduce
that y induces a linear connection I" on M. In local coordinates we have y (x/, x;) =
G xf, v (e xp) = o v (e xp), with v = vy

The Christoffel components of the linear connection I” are:

Il = =yl GHl e HE,

and thus " is symmetric.

Conversely, if I is a symmetric linear connection on M, then the global invariant section
y: FM —> F2M takes values into FZM.

Summarizing the results of the last three subsections, we have the following (see
Libermann [61], Yuen [86], de Leén and Ortacgil [21]):

Theorem 7.2.
(i) An invariant sectiony : FM — F*M of 7?12 induces a linear connection on M.
(ii) There exists a one-to-one correspondence between linear connections on M and in-
variant sections y : FM — F*M.
(iii) There exists a one-to-one correspondence between symmetric linear connections on
M and invariant sections y : FM —> F’M.

Remark 7.3. If we begin with an invariant section y : FM —> F?M then we obtain a
linear connection I with Christoffel components

I =yl H o Hh,

where y (x, x;) = (xi,xj’:, y"}(x”, xp), yj"‘k(x“, xp)).
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From Theorem 7.2, we deduce that /™ induces an invariant section o : FM —> M
locally expressed by o (x/, x}) = (xi, x;, oj’lk(x”, x).

A direct computation shows that o (x/, x;) = y(x', xj’:)(l, (x_l)Zy,‘;., 0), which can be
written in an intrinsic way taking into account that (x“l)fl y‘”j = (ﬁ,z(y(z)))_lﬁlz(y(z)),
for all z € FM. Therefore we have

o) =y()(l,1(2),0), VzeFM,

where 7 : FM —> Gl(n, R) is defined by 1(2) = (¥ () ' #2 (¥ (2)).

7.4. Non-holonomic prolongations of linear parallelisms

We shall describe a method to prolongate a pair of linear parallelisms in order to obtain
a non-holonomic parallelism of second order.

Let P be a non-holonomic parallelism of second order on a manifold M. Then P induces
two ordinary parallelisms P and Q on M by projecting P via the two canonical projections
ﬁfzﬁzM — FM andﬁf:FZM — FM.

If P(x") = (x', Pj’, ij, R},k)’ then we obtain

P =G P), Q)= Q).

Conversely, let P, Q be two linear parallelisms on a manifold M. Hence, P (resp. Q)
defines a set of n linearly independent vector fields {Py, ..., P,} (resp. {Q1, ..., On}).

We define a horizontal subspace Hp(x) at the point P (x) by translating the basis {Q, (x)}
at x into a set of linearly independent tangent vectors {dP (x)(Q,(x))} at P(x).

In local coordinates we obtain

AP0y = 0o+ 0 28 0
PR T e T RaGxi oy
where
_ ia _ i d
fa=toge  Go= o

By completing this set of linearly independent tangent vectors to a basis of Tp()(F M)
we obtain a second-order non-holonomic frame at x. We have so obtained a non-holonomic
parallelism of second order, which will be denoted by P'(Q).

Definition 7.4. A non-holonomic parallelism of second-order P is said to be a prolongation
if P = PY(Q), where P and Q are the induced ordinary parallelisms.

The local expression of P!(Q) becomes

1 i i i i uaPJl
Pl = (', P Q) 0t L ).
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Hence, P is a prolongation if and only if we have
[

i
le— Ql‘ dx”'

Notice that, if Q is integrable, then there exists local coordinates (x') on M such that
Q} = 8’ and R} P = (()P’)/(ax") where P(x') = (x', P’ Q’ R’ - Insuch acase, P is
said to be an integrable prolonganon

There exists a geometric way in order to decide if a second-order non-holonomic par-
allelism P is a prolongation or not. In fact, the induced parallelisms P and Q define
two linear connections, respectively, denoted by I7 and I>. We briefly recall their
construction.

If P = {P,...,P}and Q = {Qy,..., Oy}, then I'] is defined by its covariant
derivative:

(Vip, Py =0,
and, in a similar way, we define I; by imposing

(V2),0p =0.

Here V| and V; are the covariant derivatives defined by 77 and I3, respectively.

In other words, we transport the tangent space T, M by means of d P(x) and obtain a
horizontal subspace at the point P(x) for every x € M and, then, we extend the horizon-
tal spaces so obtained by the action of the Lie group GI(n, R). The same is true for the
parallelism Q.

The Christoffel components of I'1 and I are respectively:

1' ) B} Ql'

[ —1 a
=@
The two connections I} and I are flat, but in general they have non-zero torsion. As we

know, the integrability of the parallelisms P and Q are equivalent to the vanishing of their
torsion tensors.

(M) = —(P~ e

Remark 7.5. Notice that the horizontal subspaces at the points P (x) defined from the non-
holonomic parallelism P1(Q) are just the ones corresponding to the linear connection 7.

Moreover, the non-holonomic parallelism P induces an ordinary parallelism P on F M
as follows. We define

P(P(x)) = P(x), P(P(x)A) = P(x)(j(A)) = P(x)(A, A,0).

Notice that P takes values into F2M and, thus, it is in fact an invariant global section of
7% F?M —> F M which is locally expressed by

P x) = (foxf QL (PTOEx], Ry (P ) (P71,
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According to Section 7.1, P induces a linear connection A on M whose Christoffel
components are

=—R (PTHr@ .

Thus, we have obtained from P three linear connections I, I and A. The following
result follows by a direct computation in local coordinates.

Proposition 7.6. A second-order non-holonomic parallelism P is a prolongation if and
only if the two connections I'| and A coincide.

Corollary 7.7. A second-order non-holonomic parallelism P is an integrable prolongation
if and only if I'; has no torsion and the two connections I'y and A coincide.

The preceding corollary may be equivalently stated as follows. Let 73 be the tensor torsion
of Iy and D = I't — A the difference tensor. Then we have the following:

Corollary 7.8.

(1) A second-order non-holonomic parallelism P is a prolongation if and only if D iden-
tically vanishes.

(2) A second-order non-holonomic parallelism P is an integrable prolongation if and only
if T> and D simultaneously vanish.

Corollary 7.9. An integrable second-order non-holonomic parallelism is an integrable
prolongation. Furthermore, a second-order semi-holonomic parallelism is an integrable
prolongation if and only if it is integrable.

Remark 7.10. Notice that the parallelism P on FM defines a set {P,, P¢) of linearly
independent vector fields on FM:

. - 9
+R,—, Pi=P —

ﬁa:Q ik -
J ij’. “ax;)

i —
4axt
Now, suppose that wg (M) is a non-holonomic G-structure of second order on M.

Definition 7.11. We say thatwgz (M) is an integrable prolongation if there exists an adapted
local section which is a non-holonomic integrable prolongation.

Proposition 7.12. Ifwz (M) isintegrable, then it is an integrable prolongation. Conversely,
if @g is an integrable prolongation second-order semi-holonomic G-structure, then it is
integrable.

It directly follows that if @ (M) is an integrable prolongation, then the projected G-
structure wg (M) is integrable.



148 M. Epstein, M. de Leon/Journal of Geometry and Physics 26 (1998) 127170

8. Jet of mappings and jet manifolds

In this section, we shall give a brief review on jet manifolds (see [5,50], for instance).

Let M and N be C* manifolds of dimension m and n, respectively. Two C°° mappings
f»&:M —> N are said to be k-equivalent at a point x € M if their kth Taylor expansions
at x agree. In this case, we say that f and g define the same k-jer ji f (or ji ) f).

Consider the set J¥(M, N) of all k-jets j, f of all mappings from M to N. If we choose
local coordinates (x') on M and (y*) on N, we obtain local coordinates (x!, y¥, .. for
JK(M, N), where

« B gittetir fo

}il'"i’ - a_xil PP a_x[r
for any r-tuple (i1, ...,i,) such that i} 4+ --- + i, < k. Thus, JK(M, N) becomes a C®
manifold.

Notice that J¥(M, N) has several fibred structures. In fact, if r < k, there exists a canon-
ical projection ¥ : JX(M, N) —> J"(M, N) defined by 7 (j* f) = j f. Also, there are
canonical projections a : J*(M, N) — M and :J¥(M, N) — N, givenby a(j* ) =
x, B( jf f) = f(x); @ and B are called the source and target mappings, respectively.

Let f : M — N be a C* mapping. We define the k-jet prolongation of f as the mapping
J*f:M — J*(M, N) given by j* f(x) = j% f forany x € M.

9. Lie groupoids

Let us recall the definition of groupoid (we refer the reader to [64] for a good reference
on groupoids; see also [23-26,28,29,62,63]).

Let B a set. A groupoid over B is a set 2 provided with two maps «: 2 — B and
B :§2 — B and a law of composition satisfying the foliowing conditions:

(i) For Z, Z' € £2, the product Z - Z’ is defined if and only if «(Z) = S(Z"), and then
B(Z-Z')=B(Z),a(Z-Z) = (Z).

(ii) The triple product Z - (Z' - Z") is defined if and only if (Z - Z’) - Z" is defined and,
when one of them is defined, the associative law Z - (Z' - Z") = (Z - Z') - Z" holds.

(iii) For each X € B, there exists an element 1x € £2 such that
(@) a(lx) = B(lx) = X,
(b) if Z - 1y is defined, then Z - 1y = Z,
(c) if 1x - Z is defined, then 1y - Z = Z.

(iv) Foreach Z € §2 there exists Z Ve Qsuchthat Z7!. Z = lx,Z-Z" ' =1y, where
X =a(Z),Y = B(2).

From the definition it follows that for every element X € [ there exists a unique unity
1y, and every element Z € £2 has a unique inverse Z~!. The set B is called the subset of
unities of 2.

A subset 2’ of a groupoid 2 is called a subgroupoid if £2’ is a groupoid with respect to
the law of composition of £2.
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Next, we shall introduce differentiability. A groupoid §2 over B is called a differentiable
groupoid if:

(i) $2 and B are differentiable manifolds.

(i1) The maps «: £2 —> B and §: £2 — B are submersions (and hence they are differ-
entiable).

(iii) Themap Z — Z —1 is differentiable (and hence a diffeomorphism).

(iv) For any differentiable manifold N and for two differentiable maps f,g: N — 2
suchthat o o f = Boh,themap f-h: N — §2 defined by (f - B)(u) = f(u) -
h(u) is differentiable. Hence, the product (Z, Z') ~» Z - Z’, which is defined on the
submanifold A = {(Z, Z")|8(2) = a(Z")} C £2, is differentiable.

Suppose that £2 is a differentiable groupoid. §2 is called a Lie groupoid if the map
(a, B):2 — B x B, (a, B)(Z) = (a(Z), B(Z)) is a submersion. Notice that if («, 8)
is a submersion, then ¢ and 8 are also submersions. If («, 8) is also surjective, then £2 is
called a transitive Lie groupoid. If §2’ is a submanifold of §2 such that £2’ is a subgroupoid
of 2 and a Lie groupoid over B, then £2’ is called a Lie subgroupoid of 2.

We now give some examples of Lie groupoids.

Example 9.1. Let M be an n-dimensional manifold and denote by 77 (M, M) the manifold
of the 1-jets j;vqb of local diffeomorphisms ¢ from M to M. A direct computation shows
that 7' (M. M ) is a Lie groupoid over M with the source and target maps, respectively,
defined by a(j! ,¢) = x and B(j} .¢) = y.

Example 9.2. Let P be a principal bundle over a manifold M with structure group G and
projection 7 : P —> M. We denote by J!(P) the manifold of 1-jets jul,cpm)d) of local

automorphisms @ of P such that @ (va) = ®(v)a Yv € P,Va € G. Notice that J1(P) C
' (P, P). We define an equivalence relation on J ' (P) as follows: j! 5, @ ~ j, e

- ua, Pwya™ "
Denote by J!(P) the quotient space J'(P)/G. If we define
&y o@D =1@), By ou®) = T(Pw)),

we can easily check that J1(P) is a Lie groupoid over M with source and target maps

a, 5 : fl(P) — M. Sometimes we will denote b j1 @ the equivalence class of
Y Jxom q

Ji @ Where x = 7 (). With some abuse of notation j| , @ will be called the 1-jet
of @ atx.

Part I1. Cosserat media
10. Configurations and all that
10.1. Configurations of Cosserat media

A body B is a three-dimensional differentiable manifold which can be covered with just
one chart. An embedding ¢ : B —> R is called a configuration of B and its 1-jet j)l(.‘p(x)q&
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at X € Biscalled an infinitesimal configuration at X. We usually identify the body with any
one of its configurations, say ¢o: B —> R>, called a reference configuration. Given any
arbitrary configuration ¢ : B — R3, the change of configurations « = ¢ o @, lis called a
deformation, and its 1-jet j¢}o(X).¢(X)K is called an infinitesimal deformation at ¢o(X).
For elastic bodies, the material is completely characterized by one function W which de-
pends, at each point of 13, on the gradient of the deformation evaluated at that point, namely,

W =W (ix. k) - @)

The picture describing a Cosserat medium is more complicated. In fact, a Cosserat
medium is the linear frame bundle FB of a body B. B is usually called the macromedium
or underlying body. With some abuse of notation, we shall call B the Cosserat continuum.

A configuration of a Cosserat medium B is an embedding ¥ : FB — FR? of principal
bundles such that the induced Lie group monomorphism 1/} :GIGB.R) — GI(3,R) is
the identity map. Hence, ¥ : FB — FR? is a morphism of principal bundles such that
lI/(f(a) = lI/(f()a forall X € FB,a € Gl (3, R). Also, ¥ induces a differentiable mapping
¥ : B — R in such a way that ¥ covers ¥. The mapping ¥ is an embedding of B into
R3. In particular, ¥ : B — R? is a configuration of the underlying body B.

Remark 10.1. The condition ¥ (Xa) = ¥ (X)a means that ¥ transports the tangent space
Tx B of B at X = mz(X) onto the tangent space TW)R = R3 of R? at ¥ (X). In fact, if
X is a frame at X, i.e., a basis of Tx 3, then ¥ (X) is a basis of 3. The above condition
implies that this linear mapping does not depend on the choice of the linear frame X.

On the other hand, we have another linear isomorphism dy (X) : Tx B — Tv,(x)[RR3 =
R*.

Notice that the sub-bundle ¥ (F B) of FR? is just the frame bundle of ¥/ (B),i.e., ¥ (FB) =
F(y(B)).

Since we are dealing with equivariant embeddings, we can consider equivalence classes
of the I-jets Jx uD(X)lll according to Example 9.2. So, the 1-jet j/{,“/l(x)lll is called an
infinitesimal configuration at X. We usually identify the Cosserat medium with any one
of its configurations, say ¥ : FB —> FR?, and we denote by /g the induced mapping
Vo : B — R3. Notice that ¥ (FB) = F(yo(B)). ¥ : FB — FR? is called a reference
configuration. Given any arbitrary configuration, ¥, the change of configuration x = ¥ o
lI/(;l is called a deformation, and its 1-jet jl/ll()(X).l//(X)l? is called an infinitesimal deformation
at ¥o(X). Notice that a deformation is a principal bundle isomorphism. We have of course
a change of configuration of the underlying body B, namely x = ¥ o 1,[/61 , with the obvious
notations for the induced mappings.

From now on we make the following identifications: B = yo(B3) and FB = ¥y(FB) =

F(o(B)).

Remark 10.2. A more general Cosserat media may be considered. In fact, we may consider
deformations x such that /F(f(a) = /Z(f()go(a), where ¢ : GI(3.R) — GI(3,R) is a Lie
group isomorphism.
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Our assumption is that the material is completely characterized by one function W which
depends, ateach point of 3, on the 1-jet of the deformation evaluated at the point X, namely,

W = W(jix )0 (8)

Eq. (8) is called the constitutive law of the Cosserat continuum.
The function W measures, for instance, the stored energy per unit mass.

Remark 10.3. A Hamiltonian description for elastic simple bodies can be found in
[6.45,65,66]. The corresponding description for media with microstructure was recently
studied in [7].

10.2. Uniform Cosserat media. Material symmetries

Suppose that an infinitesimal neighbourhood of the material around point ¥ can be grafted
so perfectly into a neighbourhood of X, that the graft cannot be detected by any mechanical
experiment. If this condition is satisfied with every point X of B, the Cosserat medium is
said to be uniform. This physical property can be expressed in a geometrical way as follows.

Definition 10.4. A Cosserat continuum B is said to be uniform if for two arbitrary points
X and Y in B there exists a local principal bundle isomorphism ¥ from FU onto FV,
where U is an open neighbourhood of X and V is an open neighbourhood of Y such that
W(Za) =¥ (Z)a,Z € FU.a € GI(3.R), the induced local diffeomorphism ¢ : V — U
maps X into Y, and

Wy e = W0y ik - ix %) ©)

for all infinitesimal deformations jYIAKmE.

Denote by G(X,Y) the collection of all 1-jets j)'('w(x)lll satisfying Eq. (9). So, 2(B)
is a subset of the Lie groupoid J'(FB). and if the Cosserat continuum B is uniform then
Q(B) is a transitive subgroupoid of J! (F B). Our assumption is that Q(B) is in fact a Lie
subgroupoid, and this condition is the mathematical translation of the smooth uniformity.

We denote by @: 2(B) — Band 8:2(8) — B the source and target mappings,
respectively, which are in fact the restrictions of @ and . That is, we have &(j)l(“/[(x) Uy=X

and B(jx %) = ¥ (X)),

Definition 10.5. Given a material point X € B a material symmetry at X is a l-jet
j)](.w(X)W’ where ¥ is a local automorphism of F 5 at X such that ¥ (Ya) = ¥ (Y)a

VY € FB,Va ¢ GI(3,R), X is fixed by the induced local diffeomorphism , and
W(xeon®) = Wiy - ix.x¥) (10)

for all j)'(qk(x)/?.
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We denote by G(X) the set of all material symmetries. It is easy to check that G(X) is a
group with the composition of jets which is called the isotropy group or group of material
symmetries at X .

Now, fix a point Xg in B and put QXO(B) = &~ !(Xg). Then we deduce the following.

Proposition 10.6.
(i) (_;(Xo) is a Lie group.
(i) on (B) is a principal bundle over B with structure group G(Xg) and projection p.

Proof. Since
2x,(B) = @~ (Xo),

we deduce that QXO(B) is closed and in fact a closed submanifold of £2(B3), since & is a
surjective submersion. Furthermore, we have

G(Xo) = @, B (Xo, X0),

and then G (Xp) is a closed submanifold, since @ x f is a surjective submersion. Hence,
G(Xp) is aLie group from the Cartan theorem.

There exists an action of G(Xp) on £2 x,(B) on the right which is given by composition
of jets. Since (@, B):2(B) — B x B is a surjective submersion there exists an open
covering {U,) of B and local sections of (&, B), 04.»: Uz x Uy — 2(B).

Suppose that X € Uy, and define o, : U, —> 2x,(B) by 0,(X) = 045.4(X0, X).
We obtain diffeomorphisms A, : U, x G(Xo) — (B) '(U,) defined by A, (X,Z) =
04(X) - Z. A direct computation shows that the family {U,, A,} defines a principal bundle
structure on £2 x, (B) with structure group G (Xo) and projection 8, for which { A, } are local
trivializations. The local sections {0, } are adapted for the G (Xo)-bundle structure. O

We have proved Proposition 10.6 by using a slight modification of the standard proof in
the case of simple bodies (see [18,19] and the book of Fujimoto [49]).

A local section 0 :U C B x B —> Q(B) of (&, 8), where U is an open subset of
B x B, will be called a local uniformity. In such a case we say that B enjoys locally smooth
uniformity. A global section o will be called a global uniformity, and, in that case, we say
that B enjoys smooth global uniformity.

The assumption of the Lie groupoid character of $2(B) is, in fact, the mathematical
translation of the smooth uniformity.

Next, we consider the set £2(B) of all the 1-jets j'v of local diffeomorphisms of B
induced from the elements of §2(B). It is not hard to prove that £2(B) is a Lie subgroupoid
of IT' (B, B), provided that §2(B) be a Lie groupoid. We denote by « and 8 the source and
target mappings which are in fact the restrictions of , 8: IT' (3, B) — B. Moreover, the
canonical projection

L RB) — 2B Lixyoo?1 k¥

is a groupoid morphism.
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We also consider the set G(X) of the induced local isomorphisms from the elements of
G(Xo); G(Xp) isa group. Next, we put 2x,(B) = B~ (Xo). Proceeding in a similar way
than above, we can prove the following.

Proposition 10.7.
(i) G(Xy) is a Lie group.
(ii) 2x,(B) is a principal bundle over B with structure group G(Xo) and projection B.

In fact, the sections 7,: U, —> 2x,(B) defined by 7, = X o o, are adapted for
2x,(B).

The following construction is also standard in the theory of G-structures and Lie groupoids
[18,19.49].

Suppose that Zo = j} 4.,,® € F?B is a non-holonomic frame of second order at
Xo. (In particular, Zo may be a holonomic frame.) Define a map h: G(Xy) — (_;2(3),
by h(Z) = Z;' - Z - Zo. (To do the above jet composition we choose a representative of
the equivalence class modulo GI(3, R), and the final result is independent of that choice.)
Then # is differentiable and G = h(G (X)) is a Lie subgroup of G2(3). G is called the
isotropy group of the Cosserat medium B. It is uniquely defined up to conjugation (see
Remark 10.13).

Next, let {U,} be the open covering obtained in the proof of Proposition 10.6. We can
assume that g,,(Xo) is the identity of G (Xy) (if that is not the case, we define o (X) =
g,(X) - aaO(Xo)‘l). For a point X € U, N Up we have gp(X) = 0,(X)gqr(X), where
2av(X) € G(Xo). If we put S;(X) = 04(X) - Zo, we deduce that S, : U, — F2B and
Sp(X) = Sa(X) - h(Zap(X)). ]

Therefore the family (U, Sq} defines a second-order non-holonomic G-structure g (B)
on B with transition functions {(h(Zap))-

The principal bundles S_ZXO(B) and &g (B) are isomorphic.

Now, we put Xy = 7?12(20). Hence X is a linear frame at Xo. As above, we define
amap h:G(Xo) — GIG3,R), by h(Z) = ZO_1 - Z - Zo. Then h is differentiable and
G = h(G(Xp)) is a Lie subgroup of G/(3, R).

Also, let {r,} be the local sections obtained by projection from {o,} (see Proposition
10.7). We have new local sections {T,} which define a G-structure w¢ (B3) over I3 with
transition functions {A{gsp)}. This G-structure is in fact the canonical projection of the
second-order non-holonomic G-structure wg(B).

A section S, of F2B will be called a local uniform reference. If there exists a global
section S of F2B it will be called a uniform reference. Notice that a (global) uniformity
induces a global section § of F2B.

If we suppose that the Cosserat continuum enjoys smooth global uniformity, then there
exists a global uniformity ¢ : B — S?XO(B) which induces a global section S: B —
@ (B). The second-order non-holonomic G-structure is obtained by enlarging the global
section S by means of G. Of course, we have induced global sections 7 : B —> 2x,(B)
and T :B — wg(B). Therefore, the projected G-structure is obtained by enlarging T
by G.
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Definition 10.8. A non-holonomic frame of second-order Z at Xo will be called a refer-
ence crystal.

Summarizing the results we deduce that, associated with a uniform Cosserat continuum
B there exist:
(i) a second-order non-holonomic G-structure wg(B) on B;
(ii) a G-structure wg (B) on B, obtained from wg (B) by projection, with structure group
G = prg((_;).

Remark 10.9. Since the canonical projection frlz : F?B —» FB is a principal bundle
homomorphism, then the G-structure &g (B) defines via the projection 77 a G'-structure
wg; (B) on B, where G = pri(G). In fact, if we assume that B enjoys global smooth unifor-
mity, then w(;, (B) is constructed by prolongating a global section P : B —> FB obtained
by projecting the second-order non-holonomic parallelism S by means of the Lie group G'.

10.3. Homogeneous Cosserat media

As we have seen, a Cosserat continuum is uniform if the function W does not depend
on the point X. In addition, a Cosserat continuum is said to be homogeneous if we can
choose a global uniform reference which is constant on the body. In a more precise way,
we introduce the following definition.

Definition 10.10. A Cosserat continuum B is said to be homogeneous with respect to a
given reference crystal Zy if it admits a global deformation «, with an induced diffeomor-
phism & on B, such that P = ! induces a uniform reference P, i.e.,

P(X) = jox(& ™" o Frey), VX €B,

where 7,(x) : R3 —> R3 denotes the translation on R? by the vector k (X) and Ft,(x) s the
induced map. B is said to be locally hemogeneousifevery X € Bhas aneighbourhood which
is homogeneous. It is obvious that if 13 is homogeneous, then it is locally homogeneous.

We shall prove that this definition is independent on the choice of reference configuration.
We also study what happen if we change the reference crystal.

Theorem 10.11. If B is homogeneous then wg (F B) is an integrable prolongation. Hence
wg (B) is also integrable. Conversely, if wz(B) is an integrable prolongation then B is
locally homogeneous.

Proof. Assume that B is homogeneous. Hence, there exists a global deformation ¥ which
may be used in order to define a global uniform reference S. If we take local coordinates
(x') on B given by the induced diffeomorphism «, we deduce that S is locally expressed
by
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. aP;‘
S(xl)z P(x)v /’W .

where P(x)) = (x/, Pji (x)} is the local expression of the linear parallelism P. Therefore
@¢ (B) is an integrable prolongation.

Conversely, if @z (B) is an integrable prolongation, then there exists a local adapted
section S around each point of B which is an integrable prolongation. Thus, we can choose
local coordinates (x) such that S(x') = (x', Pj" (x), 8, an"/axk). Hence, we can take a
local deformation « defined by ¥ (x!, x}) = (xf, P,fx;‘), which implies the local homogeneity
of B. O

Remark 10.12. Notice that if B is homogeneous, then the macromedium is also homo-
geneous. Obviously, the converse is not true. In fact, the integrability of the G-structure
wg (B) does not imply the prolongability of @g (B). We also notice that the homogeneity
of a Cosserat medium B does not imply the integrability of the G'-structure wi;, (B).

Remark 10.13. (1) If we change the point Xg to another point X|,, then we obtain an
isomorphic G-structure. In fact, we take a local uniformity S joinning X¢ and X, and, next,
a crystal reference obtained by composing Zg with S.

(2) We have fixed a reference configuration ®@¢. Suppose that @ is another reference
configuration such that the change of configuration is given by ¥ = ¢_] o ®q. Therefore,
by using @, the change of reference configuration ¥ yields an 1§omorphlsm between the
respective G-structures, provided that the reference crystal Zo at X is transported via ¥
to a reference crystal jo‘w(u(o))(lll oY), where Zg = ‘]O.U(O)T. Hence, the homogeneity
is indifferent to a change of reference configuration. By the way, observe that the isotropy
group G remains the same.

(3) Finally, suppose that we change the reference crystal Zg to another reference crystal
Z(’). In other words, we choose another non-holonomic second-order frame Z’ at Xo. Hence
we get S, (X) =0, - Z) = 04(X)-Zy- (A, B, C),since Z, = =Z5-(A, B, C) (A,B,C) e
G*(3). We deduce that the new G'-structure is conjugate to the original G structure, and
the isotropy groups G’ and G are conjugate, namely

= (A, B,C)G(A,B,C)"",  @5(B) = dz(B)A. B, C).

As we know, if one first-order G-structure is integrable, the same holds for all conjugate
G-structures. However, if a G-structure is integrable (or an integrable prolongation), a
conjugate G'-structure may fail to be also integrable (or an integrable prolongation). We can
easily check this fact by considering, for instance, an integrable non-holonomic parallelism.
Our present definition of homogeneity is glven with respect to a fixed reference crystal.
Indeed, if we change from a reference crystal Zo to another Z’ then the homogeneity does
not hold, in general.
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11. Cosserat media with global uniformity

Along this section we shall suppose that B enjoys smooth global uniformity. This means
that there exists a global uniformity o which induces a global uniform reference S, ie., a
second-order non-holonomic parallelism on B.

Then we have the following parallelisms:

(i) a second-order non-holonomic parallelism S: B — F2Bon B,
(i) a linear parallelism P : B —> F BB on B defined by the projection of S, namely P =
7loS;
(iii) a linear parallelism Q:B —> FIB on B defined from the “underlying uniformity”,
namely Q = 720 S.

Of course, S is semi-holonomic if and only if @ = P.

Notice that the G-structure wg(B), the G’ -structure a)’G,(B) and the G-structure wg (B)
are obtained by enlarging the corresponding global sections S, P and Q, by the Lie groups
G, G’ and G, respectively.

For a point X € B, P(X) and Q(X) are linear frames at X on B and S(X) is a non-
holonomic frame of second order at X. In local coordinates we have

PxHy=@ Py, Q= (' QL.
S(ry = (', S, ST, 8] (),

where Sj’: = P} and Sfj = Q;
From now on, we shall adopt the following notation:

S(xl) = (xl’ [)jl? Q;v R}k)§

where R}k = S;.k-
The parallelism P determines three linearly independent vector fields [ Py, P2, P3} on B
which can be locally expressed as

= pi 3
Fa=Fager
P defines a linear connection I'j whose Christoffel components in a coordinate system D)
on B are:
. P/
i —1\/ [
(Fl)jk— (P )k —_axj'
The linear connection I has torsion 77 but no curvature. We notice that the connection
I is an adapted connection to the parallelism defined by P, and, hence, it is adapted to the
G’-structure w;, (B). Furthermore, we know that P is integrabie if and only if I is locally
flat.
In a similar way, the parallelism Q determines three linearly independent vector fields
{01, @2, O3} on B which can be locally expressed as
i 9
“dx!

Qa:Q

»
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Q defines a linear connection > whose Christoffel components are:

. 0!
()l =—(Q 7N WQ}.
As above, I'; is an adapted flat connection to the parallelism defined by O and, it is also
adapted to the G-structure wg (B). As we know, Q is integrable if and only if I3 is locally
flat. The torsion tensor of /7 will be denoted by 7.
According to Section 7.1, S induces a global invariant section S:FB — F2B and,

hence, a third linear connection I3 whose Christoffel components are:
(Il = —RL(PTHQTHS

Consider the difference tensor D of the two connections '] and I3, 1.e., D = V; — V3,
where V| and V3 are the covariant derivatives of ] and I3, respectively. 7> and D will be
called the inhomogeneity tensors.

The geometric characterization of the local homogeneity is as follows.

First, we consider the case of Cosserat media without symmetries, i.e., the Lie group
G is trivial, G = {(1, 1, 0)}. In that case, the G-structure & (B) is a second-order non-
holonomic parallelism S on B. As a consequence, the G-structure wg(B) and the G'-
structure w’G,(B) are ordinary parallelisms on B, which will be denoted by P and Q, as
above. From Theorem 10.11 and Corollary 7.8 we obtain the following result:

Theorem 11.1. B is locally homogeneous if and only if the inhomogeneity tensors identi-
cally vanish, i.e., Ty = 0and D = 0.

Remark 11.2. Notice that a section S of 72: F2B —> B may be valued into F2B or
F?B. But if the symmetry group G is not semi-holonomic neither holonomic, then the
G-structure @¢ (B) is a genuine non-holonomic structure.

If the isotropy group G is not trivial, we deduce from Theorem 10.11 and Corollary 7.8
the following result:

Theorem 11.3. Bis locally homogeneous if and only if there exists an adapted local section
on which T, and D are identically zero.

12. A classification of Cosserat media

In this section we shall consider two particular cases of Cosserat media.
First of all, we shall give an alternative description of the constitutive Eq. (8).
Notice that a 1-jet j)l(_K(x)fZ may be represented as a triple (p, g, r), where

i i a i 8’([ a i K.; a
pj = Kj(x ), q; = a—rj-(x ), rjk = m(x ),

with £(x’, x1) = (k9 (), kf (x), 1 <4, j k.a b 3.
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Therefore, we can write the constitutive equation as follows:
W=W(p.q,r X (1D

ie., W = W(p(X),.q(X),r(X)), where p(X) = ¢(X), ¢(X) = (Vi)(X), and r(X) =
(Vpy(X), ¢ = (Kjl-). We are using here a slight different notation in order to connect
with the usual notations in Continuun Mechanics (see [69,80,81], for instance). There the
dependence on the point in B is explicitly indicated, but this dependence automatically
appears if we use a jet formulation.
We can distinguish three different kinds of Cosserat media:
(i) Holonomic Cosserat media. They are defined by the condition

; k!
K, = T,
J oxJ

at every point X € B. We then have
S Y
axk  dxioxk’

and the constitutive equation becomes

at 3%t
W=W|—, ——— ),
dxJ’ dx/axk

i.e., we are in presence of a material of second grade:
W= W(p, Vp; X). (12)

For the sake of consistence of the constitutive equations, the admissible uniformities
must be of the same kind, and, therefore the material symmetry group is actually a Lie
subgroup of the second-order holonomic group G2(3).

(i) Semi-holonomic Cosserat media. They are defined by the condition

o’

i
= axi’
only at the point X. Hence,
2.0

aK; K
et 7 e )

for all points ¥ # X, and the constituive equation becomes
.
W=W iv a1
I Bx

W=W(p.Vp; X). (13)

ie.,
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Eqgs. (12) and (13) are apparently the same. In spite of that, note that the meanings of
p and V p in both equations are completely different. In fact, Eq. (13) means that W
does not depend on the macromedium.

Asabove, for the sake of consistency, the admissible uniformities must be of the same
nature, and the material symmetry group is actually a Lie subgroup of the second-order
semi-holonomic group 62(3).

(iii) Strictly non-holonomic Cosserat media. They are defined without conditions.

12.1. Homogeneity of semi-holonomic Cosserat media

In this case, the second-order non-holonomic G-structure @¢(B) is in fact a reduction of
the second-order semi-holonomic frame bundle 2(B), ie., ¢ (B) is a second-order semi-
holonomic structure, provided that we have chosen a semi-holonomic reference crystal.
Thus, o5(B) C ﬁz(B) and G C 62(3). In such a case we shall use the notation (I)é (B) for
the reduced bundle and G for the structure group.

If we suppose that 3 enjoys smooth global uniformity, we deduce that there exists a
second-order semi-holonomic parallelism S: B — F2B. The induced global parallelisms
P:B— FBand Q:8B — FDBcoincide.

We can write in local coordinates S(x') = (x, P/(x"), Rjy(x")) and P(x') =
(x', P{(x")).

We deduce that the two linear connections I} and [ are the same, namely I” = [ =
I>.

Consider again the diference tensor D of the two connections I” and I3,i.e., D = V—V3,
where V and V3 are the covariant derivatives of I' and I3, respectively. Remember that
I" is the linear connection defined from the projected parallelism P. Its torsion tensor will
be denoted as above by T, and, the two tensors T and D will be called the inhomogeneity
tensors.

Now, Theorems 11.1 and 11.3 have the same form:

Theorem 12.1.

(1) If the isotropy group is trivial, then B is locally homogeneous if and only if the inho-
mogeneity tensors T and D simultaneously vanish, i.e., T = 0and D = 0.

(2) In the general case, B is locally homogeneous if and only if there exists an adapted
local section on which the inhomogeneity tensors simultaneously vanish.

12.2. Homogeneity of bodies of second grade

In this case, all the configurations « and the local isomorphisms given by the uniformity
property of the Cosserat medium B are natural prolongations to the frame bundle of the
induced diffeomorphisms on the basis, i.e., k = Fx and ¥ = F, and the response
functional W may be written as follows:

W= W(j)z(‘,((x)’()’



160 M. Epstein, M. de Leon/Journal of Geometry and Physics 26 (1998) 127-170
since k = F(«x), or, equivalently,
W=W(F,VF,; X),

where F = V. Therefore, we are in presence of a material body of second grade (see
{17-19]).

Furthermore, if we choose a second-order frame Zg at a point Xg as above, we obtain a
second-order G-structure @ (B) on B. If we suppose that B enjoys smooth global unifor-
mity, we deduce that there exists a second-order parallelism §: B — F2B. We can write
in local coordinates S(x’) = (x, Pji ", R}k(x’)), where R}k = R;;j.

The induced global parallelism P : B —> FBis givenby P(x') = (x/, P}(x’)), and, as
in the previous case, we have P = Q.

Now, the connection A induced by S is symmetric and 7T = 0. We can consider the
difference tensor D of the two connections I and I3, i.e., D = V — V3, where V and
V3 are the covariant derivatives of I" and I3, respectively. Remenber that I” is the linear
connection defined from the projected parallelism P. Since I” is symmetric we deduce that

T=0,D=0«< D=0

We call D the inhomogeneity tensor. Now, Theorems 11.1 and 11.3 read as follows:

Theorem 12.2.

(1) If the isotropy group is trivial, then B is locally homogeneous if and only if the inho-
mogeneity tensor D vanishes.

(2) In the general case, B is locally homogeneous if and only if there exists an adapted
local section on which the inhomogeneity tensor vanishes.

12.3. More about homogeneous Cosserat media

In Definition 10.11 we have introduced a notion of homogeneity with respect to a given
reference crystal. We now give a general notion of homogeneity.

Definition 12.3. A Cosserat medium B is said to be (locally) homogeneous if it is (locally)
homogeneous with respect to some reference crystal.

Consider now a change of reference crystal. This means that we choose another non-
holonomic frame of second-order Z(/) at the point Xg. Hence, we have Z(’) = ZO(A, B, O),
where (A, B,C) € C_?2(3). Therefore, the new second-order non-holonomic parallelism
S’ is given by S’ = S(A, B, C), where S is the second-order non-holonomic parallelism
obtained from Zy. We obtain

S'(x"y = (x', P{AY, Q, B}, P,

a‘tjo a

“ + RL,AIBD).

A direct computation shows that the Christoffel components of the new three linear con-
nections I'|, I'; and I, are:
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(M =My, (Tl = Ty,
(I = (I3l — PLCE(AH[(P~hBHi@ ™S,
where (17 )j. 0 (1“2); o and (I3 )} « are the Christoffel components of the three linear connec-
tions induced from S.
From these expressions we obtain
T,="1, (14)
(DY = Dl + PaCr(A™H (P (B™H2QTS. (15)
If T, = 0 and D = 0, we know that B is locally homogeneous. From (14) we deduce

that 7, = 0 if and only if 7, = 0. If D # 0, then the Cosserat medium B is not locally
homogeneous with respect to Zg, but we can search for a change of reference crystal on

which D’ = 0, and, hence, B would be locally homogeneous with respect to that new
reference crystal.
We have

D' =0 Dy = —PiCEAT)(PTHB QT
& D}, (PN, PV Q} = oy,
(where a}k = —Ciw(A_l)})(B’l)kw = constant)
< D(Qj, P) = a,fj P,, with the ¢’s constant
<= ViDj, =0, where Dy = D(Q;, P),

where Vy denotes the covariant derivative defined by /1. Here Dy = D(Q;, Py) are not
the components of any tensor. In fact, D is a tensor field of type (1, 2) and Djy is the vector
field obtained by applying D to the two vector fields Q; and Py. Thus, Vi Djy are 1-forms.

Thus, in order to obtain a new reference crystal with respect to which B would be locally
homogeneous, we can proceed as follows. First, we compute the nine covariant derivatives
Vi Dji. If they simultaneously vanish, we take the reference crystal Zo = Zy(A, B, C),
where

o = —Cl, (A7)} (B™HY,

being
D(Q;. Pi) = of' Py

There exist, of course, many possible choices. From the above discussion, we deduce that
D’ = 0 and we conclude that B is locally homogeneous with respect to Z(’).
Consider a change of configuration & (x‘, xj’f) = (k' (x), k} (x”)xj’.‘). The second-order
non-holonomic parallelism §” defined by using that new configuration is given by
At ok}

i
foiy i i pa b pa i pa
S(x)—(x',xaP,-,axa ¢ oy QLR K jk). (16)
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Now, suppose that B is locally homogeneous, or, equivalently, 7» = 0 and D = 0 in the
first configuration. Hence, we can choose local coordinates around each point in 3 such that

i i i aRll
Q=9 Ryp=5%

(see Section 7.4). Thus, we have

S(xhy = P"a"a—P}
PI=% 5k |

i.e., S is an integrable prolongation of P. Next, we perform the change of configuration
(xi,x;) ~ (11 (P")ix;‘). From (16) we obtain

§(X)=(X,1,1,0, 17)

or, in other words, we have found a configuration on which S have constant components.
Observe that Eq. (17) means that the first and third matrices in S’ with respect to the basis
{Py, P2, P3} are (1) and (0) and, the the second matrix in $’ is (1) with respect to the local
coordinates (x').

Conversely, let us suppose that there exists a configuration on which S has constant
components, namely S(X) = (P(X), @(X), R(X)), where P(X), O(X) and R(X) are
constant. If P(X) = A, Q(X) = B and R(X) = C, where (A, B, C) € G*(3), then we
can perform a change of reference crystal by means of (A, B, C)~! such that the new non-
holonomic second-order paratlelism is $'(X) = (1, 1, 0). Consider an arbitrary change of
reference configuration & (x', x;) = (k(x"), k] (x“)xj“). With respect to the new reference
configuration we have

) i 0 aKi aK;
ST(x") = (x VK FyE W)’
which shows that B is, in fact, locally homogeneous.

Summarizing the above discussion, in order to check the local homogeneity of a Cosserat
medium, we have to pick an arbitrary adapted section and compute the two tensors D and 7>.
If T» # 0, the material is not homogeneous. If 7> = 0, but D # 0 we have a chance. In fact,
we must compute the nine covariant derivatives V) D;,. If all them vanish, we can perform
a change of reference crystal in order to obtain an homogeneous configuration. Of course,
this discussion holds when the isotropy group is trivial. If the isotropy group is continuous
(even not trivial) we have an additional degree of freedom. Thus, in order to decide about
the local homogeneity, we must consider the existence of alternative adapted sections on
which the inhomogeneity tensors would vanish. As in the case of simple materials, we can
obtain in some cases a complete answer by using geometrical results on the prolongability
of second-order non-holonomic G-structures (see [37] and Section 13).

Remark 12.4. It is important to distinguish between changes of coordinates and changes
of configurations. For simple media, there are no mathematical differences, since a change
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of coordinates is a local diffeomorphism which can be interpreted as a local change of
configuration, and conversely. However, for Cosserat media, there is a subtle difference.
In fact, a deformation is a morphism of principal bundles, but not every morphism of
frame bundles is of the form ¥ = F«. This situation occurs only in the case of holonomic
Cosserat media. Thus, the existence of a constant uniform reference S does not imply that
S is integrable, it only implies that S is an integrable prolongation.

13. Homogeneity of particular Cosserat media

Throughout this section we shall consider local homogeneity with respect to a fixed
reference crystal (see Section 12.3).

13.1. Cosserat-Toupin media

We call a second-order non-holonomic G-structure on B a Cosserat—Toupin structure
when the structure group of the Cosserat medium is a Toupin subgroup.

We put G = (G}, G, a(G1.Ga) — Giw), where G} and G, are Lie subgroups of
GI(3,R) and « is a given element of B2(3). Since G is the conjugate subgroup of the
subgroup (G, G», 0), then the G-structure @ (B) is conjugate to the (G, G2, 0)-structure
@. We then only consider the case (G, G2, 0).

Notice that there exist two projected G-structures, namely, a G1-structure w; obtained
by enlarging P by means of G| and, a G;-structure w7 obtained by enlarging Q by means
of G2.

Recall that & is defined by enlarging the global section S : B —> F2B to the whole group
(G1, G2, 0). Denote by I't, 1> and I3 the three linear connections introduced in Section 13.

Suppose that B is locally homogeneous. Hence, @ is an integrable prolongation and, then
there exist local coordinates (x) and a local section s locally expressed by

i i ap]
s(x) = x! pJ,S .

Therefore, we obtain S(x!) = (x', ij, ; Rj'ik) = (x/, pj'i, 5;, apjfi/axk)(A, B, 0), where
A € G1, B € G;, which implies

ap,

a i _ pi P apb
Pi=riAf.  Q; =B = b B
A direct computation yields:
' —(p 1y p, A1y -1 18
Djp = —p )"8 ; —(A )ra j( )kpp (18)
B
() =—(B~ )"8 7 (19)
—l\u Pu
(D) =(p~ D5 % (20)
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From (20) we deduce that I3 coincides in the coordinate neighbourhood with the flat
connection defined by the local parallelism p(xi) = (xf, p} (x)). Therefore, I3 is a flat
G -connection.

Moreover, w; is integrable, i.e., the macromedium is locally homogeneous.

Conversely, suppose that the macromedium is locally homogeneous, i.e., w is integrable
and I3 is a Gj-connection.

Since wy is integrable, then there exist local coordinates (x') on B such that a(x’) =
(x', 1) € wy. Hence, we have S(x') = (x', P;', Q; Rj'ik), where (x/, Q;’.) = (x',)B =
(x*, Bj’.) for some B € G;. Thus, we have that (Q} = B;) € G7. We construct a local
section

sy =S, B7L0) = (L P LRI (7)),

which is also adapted to @ since (1, B~1.0) € (G, G2, 0). The point now is to find a
local section o (x') = (x', p;‘., l,r;k) such that s(x’) = o(x')(A, 1,0), where A(x') €
Gi, rjp = (3p})/(3xh).

If such a section exists, then we have

Pl =piA%,  Ri(Q7D} =ri AL 1)

From (21) and by a direct computation, we deduce that

a a

DA )
(A7 = (P 5% = RE(PHi @7y 2)

Since I and I3 are Gi-connections we deduce that the right-hand side of Eq. (22)
belongs to the Lie algebra g of G. Therefore, Eq. (22) has a solution A in G| and we are
able to construct the required section o.

Thus, we have proved the following:

Theorem 13.1. If B is locally homogeneous, then the macromedium is also locally home-
geneous and I3 is a flat G1-connection. Conversely, if the macromedium is locally homo-
geneous and I'y is a G |-connection, then B is locally homogeneous.

Assume that B is a holonomic or semi-holonomic Cosserat medium. This means that
Gy =G, =G, P = @Qand "N = I} Inthat case, Theorem 13.1 reads as follows:

Corollary 13.2. Let B be a holonomic or semi-holonomic Cosserat medium. Then, if B is
locally homogeneous, the macromedium is also locally homegeneous and I's is a locally

flat G-connection. Conversely, if the macromedium is locally homogeneous and I'y is a
G-connection, then B is locally homogeneous.

13.2. (1,1, X4 1))-structures

Suppose that the isotropy group is G = (1, 1, Zan).
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Consider a (1, 1, X 1y)-structure @z (B) on B. In that case, G = G' = {1}, or, in
other words, the induced G-structure wg (B) is the linear parallelism Q and the induced
G'-structure w;, (B) is the linear parallelism P.

Denote by I'|, I3 and Iz the three linear connections defined from the second-order
non-holonomic parailelism S. We can define for each « € X ) a linear connection on B
as follows. Consider the global section S, = S(1, 1, a), i.e.,

Sa(x) = (x, P (x), Q}(x), R (x))(1, 1, @)
= (x, P (x), Q (x), le(x)-l-P (X)a k)
Of course, if we consider a function « : B — X 1, we can also define a section Sy as
above.

The global section S, determines a new linear connection I3, which in an arbitrary
system of coordinates has Christoffel components

(D3.0)je = —(Rls + Paaf)(PTH(Q™N] = (1)), — Plaf (PTH(Q™Y)

Notice that I'3 g = T3.

Now, suppose that B is locally homogeneous. Hence, there exists an adapted section
s which is an integrable prolongation. This means that there exist local coordinates (x!)
around each point of B such that

. ap
s(x’):(x pj,(S’ 2)

is an adapted section. Hence, we have

i i pi i pi i 8le
S(x):(x,Pj,Qj,Rjk): x,p,1, pyr3 (1, 1, a(x))

S . Bp’:
j
) (XI’pfl" L Pact + ax">’

for some element a(x“) € X1 1.
Consequently, we obtain
i
i i Y i _ i a J
Pp=rp Q=0  Ry=pei+ot
Therefore, the Christoffel components of the three linear connections I , I; and I3 in
these coordinates are the following:

_ -1 P
(M) ==~ i 5

()i =0, (24)

1,0 0P i -1
(M) ==~ Hi5 % = paefi(p ™k (25)

(23)
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From (25) we deduce that
(53)j = (M) — phet; (P~ i (26)

from which we have that I3 _, = I on the domain of the local coordinates (x).

By the way, observe that the macromedium is locally homogeneous since the
torsion tensor 7> of I2 vanishes, which is equivalent to the integrability of the linear paral-
lelism Q.

Conversely, suppose that the macromedium is locally homogeneous and that there exists
a function « : B —> X' 1) such that I3, = I7.

Since wg(B) is integrable, i.e., Q is integrable, then there exist local coordinates (xh
around each point of B such that the local section s(x') = (x', 1) is adapted to wg (B), or,
equivalently, Q(x’) = 1. Thus, we obtain S(x') = (x‘, P]’ I, R_;k)'

Next, since /3, = '] we obtain

; : P!
I} I oa r
R, + Pia,; = PyE

Therefore, the section S, is an integrable prolongation, since
Selx") = (x', P 1. Ry + Paaf)).

We can summarize these results in the following theorem.

Theorem 13.3. Suppose that B is locally homogeneous. Then the macromedium is locally
homogeneous. Moreover, there exists a local coordinate system (x') around each point of
B and a local function a(x') taking values into X\ such that (1"3_,0,);,( = (I )j.k, or,
in other words, the connections I3 _, and I'| coincide on the domain of the coordinates
(x"). Conversely, if the macromedium is locally homogeneous and there exists a function

a:B — X such that I's o = I, then B is locally homogeneous.

If B is holonomic or semi-holonomic, then P = Q and 'y = 1. In that case, Theorem
13.3 reads as follows:

Corollary 13.4. Let B be a holonomic or semi-holonomic Cosserat medium. If B is locally
homogeneous, then the macromedium is locally homogeneous and, further, there exists a
local coordinate system (x') around each point of B and a local function a(x') taking values
into X'(1.1y such that (F3,~a);k = ~a}k, or, in other words, the matrix of the Christoffel
components of I3 belongs to X 1y. Conversely, if the macromedium is locally homoge-
neous and there exists a function o : B —> X1y such that I3 = I, then B is locally
homogeneous.

13.3. The general case

Suppose that G = (G,,Gy, X)is aLie subgroup of G%(3), where G| and G, are Lie
subgroups of G/(3,R), and X C B2(3). We assume along this section that (G, G2, 0) is
a subgroup of G.
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Theorem 13.5. Suppose that B is locally homogeneous. Then the macromedium is locally
homogeneous. Moreover, there exists a local coordinate system (x!) around each point of
B and a local function a(x) taking values into X such that (Fg,Aa);k = (I} );k, o, in
other words, the connections I3 _, and I'| coincide on the domain of the coordinates (x!).
Conversely, if the macromedium is locally homogeneous and I3 is a G-connection, then
B is locally homogeneous.

Proof. The proof follows the same lines that Theorems 13.1 and 13.3 taking into account
that (G, G2, 0) is a subgroup of G. O
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