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Abstract 

A geometric description of generalized Cosserat media is presented in terms of non-holonomic 
frame bundles of second order. A non-holonomic G-structure is constructed by using the smooth 
uniformity of the material and its integrability is proved to be equivalent to the homogeneity of the 
body. If the material enjoys global uniformity, the theory of linear connections in frame bundles 
permits to express the inhomogeneity by means of some tensor fields. 
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1. Introduction 

In Continuum Mechanics a material body B is represented by a three-dimensional dif- 
ferentiable manifold which can be covered with just one chart (see e.g. [65,66]). Such a 
chart @ : B ----+ R3 is called a configuration. It is customary to identify the body with any 
one of its configurations, @n : B -+ R3, called a reference configuration. A change of 
configuration K = @ o @{’ is a deformation. 

Experience accumulated over centuries of particular theories indicates that the mechani- 
cal behaviour of many material bodies is local, in the sense that the deformation evaluated 
outside an arbitrarily small neighbourhood of each point of B does not affect the material 

* Corresponding author. E-mail: mdeleon@pinarl .csic.es 
’ E-mail: epstein@enme.ucalgary.ca. 

0393-0440/98/$19.00 0 1998 Published by Elsevier Science B.V. All rights reserved 
PfI SO393-0440(97)00042-9 



128 M. Epstein, M. de Ledn/Journal of Geometry and Physics 26 (1998) 127-170 

response at that point. The first derivative of the deformation, the deformation gradient 
F = VK, is sufficient for the description of the so-called simple materials. Here VK de- 
notes the derivative which coincides with the covariant derivative in the Euclidean context. 
Sometimes, we shall use this notation since it is usual in Continuum Mechanics. 

A question of both theoretical and practical importance is the following: given a descriptor 
of the material behaviour of a simple material body as a function of position in the body, 
how can it be decided that all points of the body are made of the same material? Moreover, 
after having ascertained that this is the case, are there any inhomogeneities left which 
cannot be removed by a simple change of configuration? A geometric theory based on 
the properties of the material response function alone was developed by No11 [73] (see 
also [SZ-851). A structurally based theory had been originally conceived by Kondo [55], 
Bilby [4], Kroner [56], Eshelby [48] and others, as the result of a limiting process starting 
from a defective crystalline structure (see also the books by Lardner [58] and Nabarro [72]). 
Following essentially Noll’s and Wang’s approach, the use of G-structure theory has refined 
the formulation and facilitated the derivation of specific results [3 1,441. In fact, the presence 
of inhomogeneities, such as dislocations and disclinations, manifests itself through the lack 
of integrability of the associated G-structure. 

In a sense, it may be said that the theory of inhomogeneities of simple elastic 
materials is fairly well established in terms of differential geometric constructs. However, 
many real materials are known to be non-simple. Granular solids, rocks, bone, animal 
blood, liquid crystals, composite materials, and many other materials which are common 
in nature cannot be faithfully modelled unless extra kinematic variables are taken into con- 
sideration [9,47]. The first theory of such generalized media was introduced by Eugene 
and Francois Cosserat between 1905 and 1910 [ 161. We refer the reader to Pommaret 
[76] for an account of the life and works of the Cosserats. The Cosserats studied elastic 
curves, surfaces, and three-dimensional bodies to each point of which a family of vec- 
tors (or directors) is attached. More generally, a Cosserat continuum can be mathemati- 
cally represented by an m-dimensional manifold Bm and a family of IZ vector fields (da} 
on B”. Many of the further developments of the theory can be found in Ericksen and 
Truesdell [46], Toupin [80,81], Maugin [67,69], Nowacki [74], Kroner [57], Antman [2] 
and the encyclopedical works of Truesdell and Toupin [82], Truesdell and No11 [83] and 
Eringen [47]. 

In spite of their importance, a complete theory of uniformity and homogeneity of gen- 
eralized continua is not available. A correct definition of uniformity of micropolar and 
micromorphic media is given in [47], but without defining or exploiting the underlying geo- 
metrical apparatus so as to establish homogeneity conditions, as done by No11 and Wang 
for simple media. 

The geometrical apparatus necessary to develop a rigorous theory has been available for 
some time. Actually, the notion of directors due to the Cosserats is closely related to the 
notion of the rep&e mobile (moving frame) due to Elie Cartan [lo]. In fact, if B” is a 
m-dimensional manifold, a set of m linearly independent vector fields on i?’ is a moving 
frame. If we examine how the moving frame is deformed along curves on f3” we obtain the 
notion of covariant derivative and, hence, the notion of linear connection, 
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In the 1950s the second geometric ingredient for the theory was introduced. Charles 
Ehresmann (see [23-271 and references therein) formalized the notion of principal fibre 
bundle and studied several frame bundles associated in a natural way to an arbitrary mani- 
fold: non-holonomic, semi-holonomic and holonomic frame bundles. Connections of higher 
order were also introduced. The work of Eheresmann was continued by several of his stu- 
dents, Libermann [59-61,63,77], Yuen [86], and others [ 1,52,53,70,75]. We also refer to 
the recent book by Kol$ et al. [54]. On the other hand, the notion of G-structure evolves 
from the works by Chern, Ehresmann, Bernard and Libermann (see [3,13]). 

In this paper, we make use of these geometrical tools to study the uniformity and ho- 
mogeneity of three-dimensional Cosserat media, by which we mean a three-dimensional 
continuum to each point of which three linearly independent tangent vectors are attached. 
Actually, we can interpret a generalized Cosserat continuum as a three-dimensional mani- 
fold plus its frame bundle. In fact, a linear frame at a point X of B is a basis of the tangent 
space TxB, i.e., a set of linearly independent tangent vectors at X. In order to determine the 
deformation of each tangent space it is necesssary to know how a basis of it is deformed. 
Thus, a configuration of a Cosserat medium would be an embedding of FB (the linear 
frame bundle of f3) into the linear frame bundle FR3 of R3 if we suppose that we deal with 
three-dimensional continua. The embedding of principal bundles induces an embedding 
between the base manifolds, a and R3. In this way, we recover the notion of configuration 
for simple materials. A deformation is a change of configuration, which is itself an isomor- 
phism of principal bundles. If we fix an arbitrary configuration as a reference configuration, 
we obtain that a deformation is an embedding of FB into FR3. 

The constitutive elastic law is now written as 

W = W(jiK), 

where K is the embedding and ji K denotes the l-jet of K, or, in other words, the gradient 
of the deformation at a point X. 

The constitutive equation (1) permits us to associate to each point of B an isotropy group 
(the group of material symmetries) as in the case of simple materials. If we assume that the 
medium enjoys uniformity then the isotropy groups at different points may be related by 
conjugation. If, further, the uniformity is smooth then we can construct a reduction of the 
non-holonomic frame bundle F2a of B, i.e., a second-order non-holonomic G-structure on 
f3, where G is a subgroup of the second-order non-holonomic group G2(3). This kind of 
geometric structure was studied by Libermann, Oproiu, Yuen, Kohl? [52,53,62,63,70,75] 
and others. 

The associated G-structure is obtained by using an algebraic-geometric object provided 
by the uniformity property, a Lie groupoid (see [64] for an excellent reference on Lie 
groupoids). In fact, the collection of material l-jets of local isomorphisms connecting dif- 
ferent points is a groupoid, its smoothness corresponding to the existence of local sections, 
which is equivalent to the Lie groupoid character. 

As a particular case, second-order holonomic G-structures are obtained, which corre- 
spond just to materials of second grade. Thus, we obtain in a very natural way a general 
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scheme including Cosserat media (non-holonomic) and materials of second grade 
(holonomic). 

This geometric formulation also provides a natural extension of the continuous theories 
of inhomogeneities of No11 and Wang [X,68,73,83,85]. In fact, a non-holonomic parallelism 
induces a linear connection and also two ordinary parallelisms, which in turn define two 
linear connections on B. The set of three linear connections defines two tensors: a torsion and 
a tensor of difference of connections. The local homogeneity of the material is equivalent 
to the vanishing of these inhomogeneity tensors. This result extends the one obtained by 
the authors for second grade materials [ 17-201 (see also [ 14,30-381). 

It should be noted that a more general geometrical model for so-called continua with 
microstructure [9,47] can be conceived as follows. A continuum with microstructure is a 
fibre bundle E over an nz-dimensional continuum B with typical fibre F and projection 
n : E + I?. B is said to be the macromedium, F is the typical micromedium and the fibre 
Ex = JC -’ (X) is the micromedium attached at a point X E B. The simplest case is a trivial 
bundle E = f? x F --+ B. Slightly more complicated models are the ones of rods and 
shells; E is the normal bundle of a one-dimensional (resp. two-dimensional) continuum B 
into R” (see [4143]). Of course, our mathematical model for Cosserat media is a particular 
case of media with microstructure. The aim of this paper is to study Cosserat media, since 
they enjoy a richer geometrical structure. In [22,39,40] we have studied the general model 
of media with microstructure. 

This paper is divided in two parts: a geometric part and the application to Cosserat media. 
In the first part, which consists of nine sections, we recall some definitions and results on 
linear frame bundles, non-holonomic, semi-holonomic and holonomic bundles of second- 
order as well as the corresponding structure groups. We notice that these concepts are known 
(but not extensively) to differential geometers. For this reason we shall explain them in some 
detail. On the other hand, we introduce a classification of the Lie subgroups of the second- 
order non-holonomic group G2(n) as well as of the Lie subgroups of the second-order 
semi-holonomic and holonomic group G2(n) and G2(n), respectively. Since there exists 
a complete classification of the Lie subgroups of the special linear group <l(n. R) (see 
[83,85], for instance) we have a classification of the Lie subgroups of G*(n) whose second 
projection onto Gl(n, R) is a Lie subgroup of ~l(n. R). We shall use the formulation ofjets 
throughout the paper. For the sake of completeness, we include a brief review of jets and Lie 
groupoids. The relationships between linear connections and invariant sections of the non- 
holonomic, semi-holonomic and holonomic frame bundle of second-order of a manifold 
M are established. Most of the results are known (see [ 15,49,51,52,70,78,79]), but some 
are new or presented in a new light (e.g. the notion of prolongability of a non-holonomic 
second-order G-structure). 

The second part of the paper is devoted to the application of the results of the first 
part to a geometrical model for Cosserat media. We introduce the notions of configura- 
tions and deformations of Cosserat continua. The elastic constitutive equation is given and 
the uniformity property is established. The group of material symmetries is introduced. 
We also give a first geometrical characterization of the homogeneity in terms of the inte- 
grability of the associated non-holonomic second-order G-structure. This non-holonomic 
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second-order G-structure is obtained by introducing a crystal reference. The behaviour of the 
fields of uniformity under the changes of crystal reference and reference configuration are 
carefully studied. Then we study the case of a Cosserat continuum enjoying global smooth 
uniformity. Finally, particular cases of Cosserat continua are studied and their integrability 
is characterized by means of some inhomogeneity tensors. 

Part I. Geometric background on frame bundles 

2. Principal bundles 

Let M be a manifold and G a Lie group. Roughly speaking, a principal bundle P over M 
with structure group G is obtained attaching a copy of G to each point of M. More precisely, 
P is a manifold on which G acts by the right and satisfying the following conditions: 

(i) The action of G is free, i.e., ua = R,(u) = u, u E P, implies a = e, where e is the 
identity of G. 

(ii) M = P/G, i.e., M is the quotient space of P by the equivalence relation induced 
by G. In other words, M is the space of orbits. Moreover, the canonical projection 
rr : P - M is differentiable. 

(iii) P is locally trivial, i.e., P is locally a product U x G, where U is an open set of 
M. More precisely, there exists a diffeomorphism 0 : x-’ (U) --+ U x G, such that 
O(U) = (X(U), q(u)), where themappingcp :X-‘(U) - G satisfiesq(ua) = qn(u)a 
for all u E n-l(U), a E G. 

A principal bundle will be denoted by P(M, G), or simply n : P -+ M if there is no 
ambiguity as to the structure group G. P is called the total space, M the base space, G 
the structure group, and rr the projection. The closed submanifold x-’ (x), x E M will be 
called thejbre overx. For a point u E P, we have x-’ (x) = uG, where n(u) = x, and uG 
will be called thejbre trough u. Every fibre is diffeomorphic to G, but this diffeomorphism 
depends on the choice of the trivialization. 

Given a manifold M and a Lie group G the product manifold M x G is a principal bundle 
over M with projection prl : M x G + M and structure group G, the action given by 
(x, a)b = (x, ab). M x G is called a trivial principal bundle. 

A homomorphism of a principal bundle P’(M’, G’) into another principal bundle P 
(M, G) consists of a differentiable mapping @ : P’ - P and a Lie group homomorphism 
cp : G’ --f G such that @(~‘a’) = @(~‘&(a’) for all u’ E P’ and a’ E G’. Hence, @ 
maps fibres into fibres and it induces a differentiable mapping 4 : M’ - M by 4(x’) = 
rr(O(u’)), where u’ is an arbitrary point over x’. A homomorphism @ : P’ --+ P is called 
an embedding if 4 : M’ - M is an embedding and if cp : G’ -+ G is injective. In such a 
case, we can identify P’ with @(P’), G’ with cp(G’) and M’ with 4(M’) and P’ is said to 
be a subbundle of P. If M’ = M and $J = idM, P’ is called a reduced subbundle and we 
also say that G reduces to the subgroup G’. 

A homomorphism @ : P’ --+ P is called an isomorphism if there exists a homomorphism 
of principal bundles P : P -+ P’ such that P o @ = idpj and @ o P = idp. 
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3. Frame bundles 

Let M be an n-dimensional differentiable manifold. A linear frame at the point x is a 
linear isomorphism z : Rn + T’M. Alternatively, z may be viewed as an ordered basis 
(zt, . . . , z,) of T’M, withzi = z(q), where {rt, . . . , r,) is the canonical basis of KY. There 
exists a third way to interpret a linear frame by using the theory of jets. Indeed, a linear 
frame z at x may be considered as the 1 -jet jd x4 of a local diffeomorphism q5 from an open 
neighbourhood of 0 in R” onto an open neighbourhood of x in M such that 4(O) = x. We 
havez = d@(O):FP -+ T,M. 

We denote by FM the set of all linear frames at all the points of M. As is well-known, FM 

is a principal bundle over M with structure group Gl(n, R) and projection rr~ : FM + 

M defined by rc~( j&4) = 4(O) = X. We denote by et the element jd ,i&n E FR”. If 
@ : N + M is a local diffeomorphism from an n-dimensional manifold N into another n- 
dimensional manifold M, we denote by Fe : FN --+ FM the local isomorphism induced 
from $, and defined by 

Let !P : FLY + FM be a local isomorphism of principal bundles such that its domain 
contains et and the induced isomorphism on Lie groups is the identity. Then we have 
@(~a) = iP( for all z E FW and for all a E Gl(n, KY). We denote by $ : R” + M the 
local diffeomorphism induced by P. We recall that $ o Nan = rr~ o @. The collection of all 

l-jets jel,,P(e,) P is a manifold which will be denoted by F2M. Of course, jb, ,Pl(e,)P can 

be identified with a linear frame at the point P(et) since dP(et) : T,, (FLY) 2 Rn+n2 + 

Tpce,) (F M) is a linear isomorphism, and we have F2 M c F (FM). There are two canonical 
projections 5: : F2M - FM and n2 : F2M + M given by %f(j&,(,,,Iy) = @(et) 

andn2(jJ,,yl(e,) P) = $(O), respectively. Of course, we have i12 = rr~o5:. It can be shown 

that F2 M is a principal bundle over FM with canonical projection %f and structure group 
G:(n) consisting of all l-jets of local isomorphisms of FW into FR” with source and target 
et. Hence, G:(n) is a Lie subgroup of Gl(n +n2, R) acting on F2M by composition of jets. 

We also have that F2M is a principal bundle over M with canonical projection 17~ and 
structure group G2(n). The group G2(n) is the fibre of F2(R”) over 0 E R”, i.e., G2(n) = 
(3i2)-‘(o). 

An alternative description of the Lie group G2(n) is the following. It consists of all 
l-jets j&(,,)P of local isomorphisms @ : FLY - FR” such that the induced map 
$ : W -+ R” maps 0 into 0. The multiplication is given by composition of jets: 

(&,(e,)pt) (j,‘,,,(&J2) = jel,,~,(~22(e,))(*t 0 *2). 

The action of G2(n) on F2(M) is also given by composition of jets. The bundle F2M will 
be called the non-holonomic frame bundle of second order and its elements will be called 
non-holonomic frames of second order. Notice that there exists a canonical isomorphism 
F2iw” Z R” x G2(n). In fact, define a global section s : R” - F21?2” as follows: 

s(x) = jJ,,PXG;(e,)@XL,, 
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where PX (si, sj) = (ri +s’, sj), x = (ri) E IV, and (si, sj) being the canonical coordinates 
on FR”. So, a non-holonomic frame of second-order u at a point x E R” may be written in 
a unique way as u = s(x)g, where g E G2(n). We have thus obtained a principal bundle 
isomorfism F2R” 2 R” x G2(n). Now, if G is a Lie subgroup of G2(n), we can transport 
KY x G by this isomorphism to obtain a G-reduction of F2(Rn). 

Definition 3.1. Let G be a Lie subgroup of G2(n). A G-reduction WC(M) of F2(M> to 
the group G will be called a second-order non-holonomic G-structure. 

Hence, the G-reduction of F2R” obtained above is a second-order non-holonomic G- 
structure on R” which will be called the standard jut (or integrable) second-order non- 
holonomic G-structure. 

Definition 3.2. A second-order non-holonomic G-structure 66 (M) on M will be called 
integrable if it is locally isomorphic to the standard flat G-structure on Rn. 

Notice that an integrable second-order non-holonomic G-structure is not necessarily 
holonomic (see Definition 3.7). We shall give a weaker notion of integrability in Section 7. 

A second-order non-holonomic trivial structure is called a non-holonomic parallelism of 
second order. Let us recall that a linear parallelism on a manifold M is just a global section 
of the linear frame bundle FM, or, alternatively, a usual { I}-structure. A direct computation 
shows that a non-holonomic parallelism of second order is, in fact, equivalent to give a 
global smooth section of 52 : F2M --+ M. 

Next, we shall describe two particular sub-bundles of F2 M. Consider the second-order 
non-holonomic frames ji, ly(e, ) 9 such that 9 is admissible, i.e., @(et) = jd,tico,+. Such 

a frame will be called a semi-holonomic frame ofsecond order and the set b2 M of all these 
frames is called the second-order semi-holonomic frame bundle of M. We have canonical 
projections ?f : p2M --+ FM and ir2 : A2 F M --+ M, given by the restrictions of 5: and 
it2, respectively. As in the case of second-order non-holonomic frames we have that i2M 
is a principal bundle over FM with canonical projection 72: and structure group 6;(n) 
consisting of the 1 -jets of all admissible local isomorphisms of FLY into FEY with source 
and target et. As above, we deduce that 6:(n) is a Lie subgroup of Gl(n + n2, R) acting 
on p2 M by composition of jets. 

F2 M is also a principal bundle over M with canonical projection ir2 and structure group 
6’(n). The structure group 6’(n) is defined by 6’(n) = (7;2)-1(O). 

An alternative description of the Lie group 6’(n) is the following. It consists of the 

l-jets jb,,P(,,) P of all admissible local isomorphisms ly : FR” ---+ FR” such that the 
induced map $: W’ - R” maps 0 into 0. The multiplication and right action are 
given again by composition of jets. It is easy to prove that Et: : k2M --+ FM (resp. 
e2 : F2M - M) is a principal sub-bundle of 5: : F2M - FM (resp. n2 : F2M --+ 
M). Notice that there exists a canonical isomorphism F2rW” 2 R” x e’(n). If 6 is a 
Lie subgroup of e’(n), then we obtain a &-reduction of F2rWn which is isomorphic with 
R” x 6. 
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Definition 3.3. Let 6 be a Lie subgroup of G*(n). A G-reduction &e(M) of F*(M) to 

the subgroup 6 will be called a second-order semi-holonomic G-structure. 

Hence, the canonical G-reduction of @*!%‘I defined above is a second-order semi-holo- 
nomic G-structure on R” and it is called the standard Jlat (or integrable) second-order ,. 
semi-holonomic G-structure. 

Definition 3.4. A second-order semi-holonomic G-structure &i;(M) on M will be called 

integrable if it is locally isomorphic to the standard flat G-structure R” x 6. 

A second-order semi-holonomic trivial structure is called a semi-holonomic parallelism 
ofsecond-order. A semi-holonomic parallelism of second order is, in fact, a global smooth 
section of ir2 : k*M ---+ M. 

Remark 3.5. Notice that there exists a canonical projection iif : F*M - FM defined 

by “&!,,P(e,)~) = jd.llrcO,+. Indeed, 5: is nothing but the restriction of the canonical 

projection nFM : F (F M) - FM to F2 M, and so it is a principal bundle homomorphism. 
It directly follows from the definitions that a second-order non-holonomic frame Z is semi- 
holonomic if and only if 5:(z) = ii;(Z). 

Finally, we shall introduce a new principal sub-bundle of F2 M. Consider the second-order 
non-holonomic frames j:, P(e,j P of M such that P = F+. Hence, @ is admissible. Such a 

frame will be called a holonomic,frame qf second order and the set F’M of all these frames 
is called the second-order holonomicframe bundle of M, or, simply the second-order,frame 
bundle of M. We get canonical projections rrf : F’M + FM and rr’ : F2 M + M. We 
have that F*M is a principal bundle over FM with structure group G:(n) consisting of all 
l-jets of local isomorphisms of the form FI/J, where $ : R” - W is a local diffeomor- 
phism such that $(O) = 0. Hence, G2(n) is a Lie subgroup of Gl(n + a*, R) acting on 
F2 M by composition of jets. 

F*M is also a principal bundle over M with canonical projection rr2 and structure group 
G*(n). The structure group G2(n) is defined by G2(n) = (n2)-‘(0). 

Alternatively, we can easily see that the Lie group G2(n) consists of all l-jets ji,,,(e, ,P 
of local isomorphisms P : FIR” - FL%” of the form 9 = F$, I/J : W ---+ R”. The 
multiplication and right action are given again by composition of jets. We deduce that 
rr: : F*M + FM (resp. rr* : F*M ---+ M) is a principal sub-bundle of 2; : F*M - 

FM (resp. $*: F2M + M). Notice that F2R” Y R” x G2(n). If G is a Lie sub- 
group of G2(rz), then we obtain a G-reduction of F2W which is isomorphic with 
[w” x G. 

Definition 3.6. Let G be a Lie subgroup of G2(n). A G-reduction WC(M) of F2(M) 

to the subgroup G will be called a second-order holonomic G-structure (or second-order 
G-structure, for the sake of simplicity). 
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Hence, the canonical G-reduction of F2KY’ defined above is a second-order G-structure 
on Rn and it is called the standardjiat (or integrable) second-order G-structure. 

Definition 3.7. A second-order G-structure WG (M) on M will be called integrable if it is 
locally isomorphic to the standard flat G-structure Rn x G. 

A second-order holonomic trivial structure is called a holonomic parallelism of second 

order. A holonomic parallelism of second order is, in fact, a global smooth section of 
n2: F2M + M. 

A direct computation shows that an integrable non-holonomic parallelism of second order 
is in fact holonomic. 

Summarizing we have the following two sequences of Lie subgroups: 

G’(n) c G2(n) c G2(n) c Gl(n, [w) x Gl(n + n2, [w), 

G:(n) c 6;(n) c G;(n) c Gl(n + n2, [w), 

and the following two sequences of principal bundles: 

F2M c p2M c F2M c F(FM) 

over FM, and 

F’M c p2M c p2M 

over M. 

Remark 3.8. There exists an alternative definition of non-holonomic frames (see [75]). 
Consider a differentiable mapping 4 : U + FM defined on some open neighbourhood 
of 0 in R” such that 71~ o 4 : U --+ M is a diffeomorphism. Then the l-jet j;,@(u)@ is a 
non-holonomic frame of second order at x = iTM (4 (0)). In fact, given 4 we define a local 
principal bundle isomorphism @ : FW ---+ FM over lJ by putting @(r. R) = $(r)R, 

where r = (ri) E W and R = (Rj:) E Gl(n, [w). Thus, jf,,@(,,,@ defines a non-holonomic 
frame at X. and a fortiori a linear frame at 4(O) E FM. A simple computation shows that 
every non-holonomic frame of second-order may be obtained in this way. In this formulation, 
the condition of semi-holonomicity is equivalent to the following one: 

4 (0) = j;,, (KM 0 4) 

The holonomicity condition is given by 

(TM 0 4) for all r E u. 

4. Local descriptions 

All the notions introduced in the previous section are of global nature. However, we shall 
now introduce local coordinates in our picture. In fact, the local description of all these 
bundles will be useful in our study. 
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Let (xi) be a local coordinate system defined on some open subset U on M. We denote 
by FU the open subset of FM defined by FU = (TM)-’ (U). Notice that our notation is 
consistent, since FU is in fact the linear frame bundle of U. The following identities and 
notations are the obvious ones: 

F2u = (?+‘(U), F2u = (JP-‘(u), 

F*U = (r*)-‘(U), F(FU) = (nFM)-‘(U). 

The induced coordinates are denoted as follows: 

FU: (x’, x;), 

F(FU): (.d,x;;xfj,x’. x!. , .Jkl ; k ‘;,kh 

F21J: (Xi, X3; Xfj, Xljk = 0,X;,,, X/,kl = X66j[), 

k2Ul (Xi, Xj; X!j = Xj, Xljk = 0, Xj,k, Xj,k] = XkJj(), 

F2U: (x’, .xj:; xfj = xJ, x(jk = 0, xi ],k, xj k[ = Xksj,)t xj,k = x;.j. 

For sake of simplicity, the local coordinates on F2M, F2 M and F2M will be written as 
follows: 

F2u: (xi, x;, Xij, x; k), F21J: (x’, x;, xj,k)’ 

F=U: (x’, xf, xjk), xJk = xij, 

and the canonical projections may now be written as follows: 

?Tr;M(xi,x;: x~j,X(jk,x;,k,x~,k,) = (xi,xJ’), 7+(X ) x;, x;j) x;,k) = (xi ( xj), 

2(x’ ) x;, Xlj) xj,,, = (x’), iif(x’, x;, x;j, x;,k) = (x’, Xfj), 

7if(xi, x;, xJ,k, = (x’, XJ:), 9(x’, x;, x;,k) = (xl), 

7rf(xi, x;, XJk, = (x’, xj,, 2(x’, XJ, Xjk) = (xi), JrM(X’, xj:, = (xl). 

Using these notations we can write the elements of the different Lie groups G2(n), G*(n), 
G2(n), G:(n), G:(n) and G:(n) as follows: 

Gl(n + iz2, If-Q: A = (Afj, Afjk, Aj,k, A;,,,), 

G*(n): A = (A;, Afj, A;,,), 

ti=(n): A = (A;, A;,,), 

G*(n): A = (A;, Aik), Ajk = Al, 

G:(n): A = (Alj, A;,k), 

G:(n): A = (Aj,k), 

G:(n): A = (Ajk), Alk = Aij, 
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and the corresponding multiplications are then given by 

G*(n): (AB); = A;B;, (AB)tj = A;kB;j. (AB);,, = A;Bjl,k + A;,,B,‘B;k, 

G*(n): (AB); = A;B;, (AB);,, = A;B;,k + A;,,BjrBi, 

G*(n): (AB); = A;B;, (AL+ = A;B;k + A;,BjrB;, 

G:(n): (AB)“[j = AtkBkJ, (AB);,, = B;,k + A$,,B:;., 

G;(n): (AB)j., = B;,k + Ai.k, 

G:(n): (AB);, = B;k + A& 

From Definitions 3.2,3.4 and 3.7 and the above local expressions, we directly obtain the 

following: 

Proposition 4.1. A second-order non-holonomic (resp. semi-holonomic, holonomic) G- 
structure WC(M) (resp. G-structure &e(M), G-structure we(M)) on M is integrable if 
and only iffor any point x E M there exists a local coordinate neighbourhood U with local 
coordinates (xi) such that the local section Q(xi) = (xi, 1, 1,O) takes values into tic(M) 

fresp. 26 (M), WG (Ml). 

Denote by B*(n) the vector space of the bilinear mappings from R” x Rn into R”. Hence, 
thereexists acanonical inclusion j : Gl(n, R) + G*(n) = Gl(n, R) x Gl(n, R) x B*(n) 
defined by j(A) = (A, A, 0). Notice that j is in fact a Lie group homomorphism since 

j(AB) = j(A)j(B). 
Denote by S*(n) c B*(n) the vector subspace of symmetric bilinear mappings. We have 

a canonical inclusion (denoted by the same letter) j : Gl (n, R) -+ G*(n) = Gl(n, R) x 
S*(n) defined by j(A) = (A,O). In fact, j:Gl(n, R) + G*(n) is the restriction of 
j : Gl(n, R) --+ G*(n) taking into account that G*(n) (and G*(n) too) may be viewed as 
a Lie subgroup of G2(n) by identifying (A, a) with (A, A, a). 

5. More about the Lie groups G*(n), G*(n) and G*(n) 

In this section we shall describe in an alternative way the Lie groups G*(n), G*(n) and 
G2(n). We shall also give a classification of their Lie subgroups. 

First of all, let us recall the definition of G*(n). A typical element is a l-jet jd,,uCe,,@, 

such that $(O) = 0. In local coordinates we have P(r’, t-j) = (@l’(F), $(r”, I)$), 

where (r’, rz) denotes the canonical coordinates in FllY. Hence, j,‘, P(e, ,P defines a triple 
(A, A’, a) by taking 

A = (A;), Aj = P;(o, I), A’ = (Al’j), 

Ai’j = ~ (0), (Y = (CQ' 
alvi 

oljk = $0,. 

Thus, we can interpret A and A’ as linear automorphisms of KY. In fact, A is the linear 
automorphism of Rn defined by @(O, I), which is a linear frame at 0 E R” taking into 
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account the identification TuR” Z W. On the other hand, A’ is the linear isomorphism 
d@(O) : R” Z TOW -+ R’* 2 TOW. Finally, (Y is the bilinear mapping a! : W x W + 
W defined by a(u, u) = ~(U)(U), where (Y : Rn -+ End(W) is the differential of the 
mapping rJ$ evaluated at 0. 

If we put 

A(rj) = Ajri, A’(rj) = A!j ri, Q!(rj,rk) = ajk Ti, 

we deduce that the group G*(n) may be identified with the product Cl (n, R) x Gl (n. R) x 
B*(n). The multiplication is now given by 

(A, A’,a) (B. B’, /!?) = (AB, A’B’. AB +ol(B, B’)), (2) 

where 

AB(u, u> = A(B(u, ~11, cr(B, B’)(u, u) = a(Bu, B’u) 

for all U, u E Rn. Notice that this multiplication is just the one given by Eringen (see [47], 
and [ 1,151 for the holonomic case). 

The neutral element is (1, 1,O) and the inverse element of an arbitrary element (A, A’, cz) 
is (A-‘, A’-‘, -A-‘(r(A-‘, A’-‘)). 

Since G*(n) Z Gl(n, R) x Gl(n, R) x B*(n), we have three canonical projections 
denoted by pq : G*(n) + Gl(n, R), pr2: G*(n) + Gl(n, R) and pr3 : G*(n) ----+ 
B*(n). 

From (2) we deduce that prl and pr2 are Lie group homomorphisms. In fact, prl (resp. 
pr2) is induced by the canonical projection ?t (resp. !f). However, pr3 is not a Lie group 
homomorphism. Therefore, an arbitrary Lie subgroup G of G*(n) may be written as follows: 
G = (G), G2, C), where GI = prl (c) and G2 = pr;?(G) are Lie subgroups of Gl(n, R), 
and C = prj(G) is a subset of B2(n). Given two arbitrary elements A E G1 and A’ E GZ 
we denote by C(A,A~) the subset of B2(n) defined by 

C(A,A~ = ((Y E B*(n) 1 (A, A’,cx) E G). 

It is easy to check that C( ,,I) is an additive subgroup of B*(n) and (1, 1, Ccl, 1)) is a Lie 
subgroup of G*(n). 

Proposition 5.1. For an arbitrary element (A. A’) E GI x G2 there exists a one-to-one 
correspondence between C( 1~1) and E(A (A’). 

Proc?f: Let (A,A’,ao) be an arbitrary element of G. If (1, 1,t) E (1, 1, C(,,,)) we de- 
duce that (A, A’, a~)( 1, 1, t) = (A, A’, At + a~). Hence, we have obtained a mapping 
4 : C(I,I) - +,A’) defined by 4(t) = As + erg. 

Conversely, since the product (A, A’, (ro)-’ (A, A’, a) = (1, 1, A-’ (a - ao)) belongs 
to(1, 1, C(t,t))foreach (A,A’,a) E c then weobtainamapping$:CcA,A,J -+ Clint) 
defined by I/J(~) = A-’ ((;Y - a~). 

A direct computation shows that + o 4 = id and 4 o $ = id. 0 
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Consider the second-order semi-holonomic and holonomic groups G2(n) and G2(n), 
respectively. In the first case, we have an identification G’(n) 2 Gl(n, R) x B2(n), since 
A’ = A. In the second case, we have an identification G2(n) S Gl(n, IL!) x S2(n). The 
multiplication (2) reads now as 

(A, a) (B, B> = CAB, AB + a(B, N). (3) 

The neutral element is (1 , 0) and the inverse element of an arbitrary element (A, cx) is 
(A-‘, -A-‘a(AP’, A-‘)). We denote by prt : G2(n) - Gl(n, R), pq :6’(n) - 
B2(n), prl : G2(n) + Gl(n, R) and pq : G2(n) -+ S2(n) the canonical projections. 

From (3) we deduce that prt is a Lie group homomorphism. However, pq is not a Lie 
group homomorphism. Therefore, an arbitrary Lie subgroup G of G’(n) (resp. G of G2(n)) 
may be written as follows: G = (G, C) (resp. % = (G. C)), where G = pri(G) (resp. 
G = prt(G)) is a Lie subgroup of Gl(n, R), and Z: = pr3(G) (resp. C = prs(G)) is 
a subset of B?(n) (resp. ,S2(n)). Given an arbitrary element A E G we denote by CA the 
subset of B2(n) (resp. S2(n)) defined by 

CA = (o E B2(n) 1 (A,a) E 6, (resp. CA = {a E S2(n)l(A, cf) E 61). 

It is easy to check that Ct is an additive subgroup of B2(n) (resp. S2(n)) and (I, Cl) is a 
Lie subgroup of 6’(n) (resp. G2(n)). 

The following result is proved in a similar way than in Proposition 5.1. 

Proposition 5.2. For an arbitrary element A E G there exists a one-to-one correspondence 
bemeen cl and CA. 

6. Subgroups of G2(n) 

Next, we shall give a classification of the Lie subgroups of G2(n). 

6. I. Toupin subgroups 

Let Gt and G2 be two arbitrary Lie subgroups of Gl(n, R) and (1, 1, a) E G2(n). A direct 
computation from (2) shows that (Gt , G2.0) is a Lie subgroup of G2(n). The conjugate 
subgroup of (G I, G2,O) by the element (I, 1, a) will be called a Toupin subgroup. We have 

with the obvious notations. 

6.2. Generalized Toupin subgroups 

If G = (Gt, G2, C) is a Toupin subgroup, we have C(t,t) = (0). Hence, we introduce 
the following definition. A subgroup G = (Gt, G2, C) for which C(t,t) = [O] will be 
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called a generalized Toupin subgroup. From Proposition 5.1 we deduce that C(A,A~) is also 
a singleton. 

Of course, a Toupin subgroup is a generalized Toupin subgroup. However, the converse 
is not true, as the next result proves. 

Proposition 6.1. Every one-parameter subgroup G of G2(n) is a generalized Toupin 
subgroup with exception of the one-parameter subgroups of the form exp t (0, 0, cr), 
a # 0. Furthermore, there exist one-parameter subgroups which are not Toupin subgroups. 

Proo$ The one-parameter subgroups of G2(n) are in one-to-one correspondence with the 
tangent vectors at (1, 1, 0), or, in other words, with the Lie algebra ,j2(n) of G2(n). Let 
(A, A’, 01) be an element of g2(n) such that A and A’ do not simultaneously vanish. Then 
the one-parameter subgroup determined by (A, A’, a) is 

expt(A, A’,a) = (exptA,exptA’,@(t, A, A’,cr)), 

where 4 : [w --$ B2(n). Then C(exprA,exptA’) = (@(t, A. A’, (II)), and thus (exp t(A, A’, 
(Y)} is a generalized Toupin subgroup. 

Suppose now that exp t (A, A’, cr) is a Toupin subgroup. Then it must be the conjugate 
subgroup of some (G 1, G2,O) by an element of the form (1, 1, B): 

expt(A,A’,a) = (1, ~,B)(GI,GL~)(~, l,B)-‘, 

or, equivalently, 

(Gl,G2,0) = (1, l,B)-‘expt(A,A’,a)(l, 1,B). 

We obtain 

(G~,G~,O)=(exptA,exptA’, (exptA)B+4(t,A,A’,u) 

- B(exptA, exptA’)). 

Hence. 

(exptA)B+@(t,A,A’,cr) -B(exptA,exptA’) =O. 

If we differentiate (4) with respect to t at t = 0, we deduce 

(4) 

A/I + a - ,9(A, A’) = 0. (5) 

Since A, A’ and (Y are arbitrary, suppose that A = A’ = 1 and o # 0. Thus, from (5) we 
have a = 0, which is a contradiction. 

Moreover, there are one-parameter subgroups which are not generalized Toupin sub- 
groups. For instance, we have exp t(0, 0, a) = (1, 1, ta). Then, if a # 0 (in which case 
exp I (0, 0,O) is the trivial subgroup (1, 1, 0)) we deduce that (1, 1, ta) is not a generalized 
Toupin subgroup. 0 

Remark 6.2. The Toupin subgroups are, therefore, rather the exception than the rule. 
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6.3. Conjugate subgroups of (1, 1, C( 1.1)) 

If(l, l,C(1,1))isasubgroupofG~(n),then~(l,l)isanadditivesubgroupofB~(n).The 
additive subgroups of an Euclidean space UP have been completely classified by Morris [7 11. 

As we know (1, 1, C(I,~)) is closed if and only if C(i,i) is a closed additive subgroup 
of B2(n). Since we are primarily interested in closed subgroups of G2(n) we only need to 
classify the closed subgroups of B2(n). Notice that B2(n) is isomorphic as a vector space 
to R”, where m = rr3. 

Now, we recall the results of Morris [71]. If A is a subset of Rm we denote by spy 
the span of A over R, i.e., the subgroup 

spy = (tlal + f t,ya,, ( tl, . . . , t, E R, s is a positive integer]. 

Notice that spy is a vector subspace of [Wm. Then we define the rank of A to be the 
dimension of spy. Morris has proved the following result (see [71, Theorem 6, p. 331): 

Theorem 6.3. Let C be a closed additive subgroup of R”. If the rank of Z: is r, then C is 
isomorphic to [WP x P-J’, where 1 5 p 5 r. If C is discrete we have C = Z’. 

Hence the closed subgroups of B2(n) 2: W3 are: 
- discrete subgroups Z’, 
- vector subspaces IF, 
- or mixed subgroups [WP x P-P. 

Consider the conjugate subgroups of (1, 1, Ccl, 1)) by an arbitrary element (A, A’, /3) E 
G2(n). Then we obtain 

(A, A’, B)(l, 1, C(I,I))(& A’, B)-’ = (1, 1, AC(,,l)(A-‘, A’-‘)). 

Thus the element fi is not relevant for conjugation of subgroups of the form (1, 1, Z(l,l)). 
Hence we shall only consider the conjugate subgroups obtained by conjugation of 
(1, 1, C(i.1)) with two elements A, A’ E Gl(n, R). 

A similar classification can be given for the subgroups of G2(n) and G2(n), but we omit 
here the details. Indeed, we have 
- Toupin subgroups: 

(G,(r(G, G)-Ga),whereGisasubgroupofGl(n, @anda! E B2(n)(resp.a E s2(n)); 
- generalized Toupin subgroups: 

(G, C), where G is a subgroup of Gl(n, R) and Ci = (0); 
- subgroups of the form (1, AC1 (A-‘, A-‘)), where A E Gl(n, R) and Z] is an additive 

subgroup of B2(n) (resp. s’(n)). 

7. Second-order frame bundles and linear connections 

There exists a close relation between linear connections on a manifold A4 and invariant 
sections of the second-order non-holonomic, semi-holonomic and holonomic frame bundles 
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over the linear frame bundle FM of M. In fact, roughly speaking, a non-holonomic frame 
of second order is a horizontal space of a linear connection. In this section we shall briefly 
recall the main results. 

7. I. Sections of F2M 

Let y be an invariant global section of the second-order non-holonomic frame bundle 
F2M over FM, i.e., y : FM --+ F2M such that 

I?; 0 )/ = idFM, y(zA) = y(z)j(A) = y(z)(A, A, O), 

Vz E FM, VA E Gl(n, R). 

In local coordinates we write y(x’, .x3’) = (x’, xj, y.ij(xa, x,“), Y~,~(x”, .a$‘)). 
The invariance of y implies the following identities: 

r;(xN, $A;;) = y”A;, y;,&“, $A;;) = y,!,A,;A& (6) 

The section y defines a connection in the principal bundle FM as follows. Suppose that for 
an arbitrary point z E FM we have y(z) = jb, ,Pl(e, ,tP, where @ : FRn ---+ FM is a local 

isomorphism, P(et) = z.Hence, P islocally writtenas P(?, $) = (@(r”), PL(P, I)$). 
Hence, we have a well-defined mapping @ : iw” --+ FM, O(r) = P(r, 1) for all Y E 
R”. In local coordinates we have @(?) = (I/J’(P), rPi((yL’. 1)). Here (r”, rt) denotes the 
canonical coordinates in FW. Now, we define a vector subspace at the point z by taking 
HZ = d@(O)(Tr$W). 

In local coordinates we obtain 

Thus, the vector subspace HZ is generated by the basis 

These vector subspaces are horizontal (i.e. they are complementary to the vertical subspace 
at this point). Therefore, we obtain a smooth distribution H on FM and hence a connection 
r in the principal bundle no : FM ---+ M. Furthermore, this connection is linear because 
the horizontal distribution is invariant by the action of Gl (n, R). 

Next, we shall compute the Christoffel components of I-. First, notice that the local vector 
fields 

yr = (y-‘)f/-xk = & + (y-‘)“,v;,$ 
J 

form a local basis of H. Taking into account that the horizontal lift of a/axr to FM with 
respect to r is 
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aH a (3 axr = G - rjaxp -5, 
J 

we deduce that 

where (x-l); denotes the inverse matrix of (xJ). Observe that, in fact, r,!t does not depend 

on the choice of XI. 

7.2. Sections qf p2A4 

Now, let us suppose that y takes values into k2M, or, in other words, y is a global 
invariant section of the second-order semi-holonomic frame bundle @*A4 over FM i e 1 . ., 
Erf o y = id and y(zA)= y(u)j(A) forallz E FM,A E Gl(n,R). 

The section y is in particular a global invariant section of F2M and hence it induces a 
connection r in FM. 

If we write y (x’ , xj) = (2, xi, yf’ (x0, x,“) = xj, yJ‘ k (x”, xg)), then the vector subspace 
Hz, at a linear frame z E FM, is generated by the basis 

Proceeding as above we obtain the Christoffel components of r: 

rjt = -~j,k(~p'):(x-l)~. 

where (x-l):. denotes the inverse matrix of (xj). 
Conversely, if r is a linear connection on M, then we can construct a global invariant 

section y : FM --+ p2M as follows. 
Let z E FM be an arbitrary linear frame at a point x E M. Denote by Hz the horizontal 

subspace defined by r at z. If we consider local coordinates (x’) on M then a local basis 
(Yk) of Hz is given by 

where ri k,c, are the Christoffel components of r in the given coordinate system. We now 
change this basis to the following: 

This new basis of Hz may be completed to a basis of the whole tangent space T,(FM) by 
taking the standard basis of the vertical subspace at z, namely 



144 M. Epstein, M. de Ledn/Journal of Geometry and Physics 26 (1998) 127-170 

In fact, {Xi) are the fundamental vector fields induced by the canonical basis of the Lie 
algebra gZ(n, R) of Gl(n, R). 

Thus, we have obtained a linear frame Z of FM at the point z which may be locally 
represented in induced coordinates as follows: 

z = (xi, xj; xJ., Xfjk = 0, Y/,k = -r:,x;x,“, Xj,_,l = X:6/[). 

Therefore, Z is a second-order semi-holonomic frame at z and we obtain a global invariant 
section y : FM + k*M locally defined by y(x’, xf-:) = (x’, xj, Y~,~(P, xg)). 

Remark 7.1. We can obtain y from r in a different way as follows. Denote by a! : TX M -+ 
Hz the inverse map induced by the connection and suppose that z = jd Cp. a! can be realized 
by a local section (T : M ---+ FM, i.e., o(x) = z and da(x) = a. 

Hence we consider the local bundle isomorphism @(P, rz) = (4’(P), ai (ti(r”))rf). A 

direct computation shows that j,‘, @ = Z. 

7.3. Sections of F* M 

Now, let us suppose that y takes values into F*M, i.e., y is a global invariant section 
of the second-order frame bundle F2M over FM. From the above sections, we deduce 
that y induces a linear connection r on M. In local coordinates we have y (x’, xj) = 

(xi, xj, y~(x”, xg) = xi, yik(.xu, xt)), with yjk = yLj. 
The Christoffel components of the linear connection r are: 

r:, = -~/~(x-l):(x-~)~. 

and thus r is symmetric. 
Conversely, if r is a symmetric linear connection on M, then the global invariant section 

y : FM ---+ F*M takes values into F*M. 
Summarizing the results of the last three subsections, we have the following (see 

Libermann [61], Yuen [86], de Leon and Ortacgil [21]): 

Theorem 7.2. 
(i) An invariant section y : FM --+ F*M of ?F induces a linear connection on M. 

(ii) There exists a one-to-one correspondence between linear connections on M and in- 
variant sections y : FM + i2M. 

(iii) There exists a one-to-one correspondence between symmetric linear connections on 
M and invariant sections y : FM + F*M. 

Remark 7.3. If we begin with an invariant section y : FM + F*M then we obtain a 
linear connection r with Christoffel components 

r;[ = -Y;,~(x-~)/(~-~)~,., 

where y(x’,xJ’) = (x’,xj, y~j(x”,x~), yj.,(x’,xg)). 



M. Epstein, M. de Ledn/Journal of Geometry and Physics 26 (1998) 127-170 14.5 

From Theorem 7.2, we deduce that r induces an invariant section IJ : FM --f fi2M 
locally expressed by G (x’ , xj) = (x” , xi, CT; k (x’, ,I$)). 

A direct computation shows that a(~‘, xj) = y (x’, xj)( 1, (x-‘)~~,~, 0), which can be 

written in an intrinsic way taking into account that (~-‘)6~,~ = (%f(v(z)))-‘itf(v(z)), 
for all z, E FM. Therefore we have 

o(z) = y(z)(l, t(z), 01, Vz E FM, 

where t : FM - Gl(n, [w) is defined by r(z) = (?s:(v(z)))-‘;;:(v(z)). 

7.4. Non-holonomic prolongations of linear parallelisms 

We shall describe a method to prolongate a pair of linear parallelisms in order to obtain 
a non-holonomic parallelism of second order. 

Let P be a non-holonomic parallelism of second order on a manifold M. Then P induces 
two ordinary parallelisms P and Q on M by projecting P via the two canonical projections 
5:: F2M -+ FM and “12: F2M -+ FM. 

If P(x’) = (xi, Pj, Qtj, Rj k), then we obtain 

P(x’) = (x’, P/i,, Q(xi) = (x’, Qtj). 

Conversely, let P, Q be two linear parallelisms on a manifold M. Hence, P (resp. Q) 
defines a set of n linearly independent vector fields (PI, . . , P,} (resp. {Q 1, . . , Q,,}). 

We define a horizontal subspace HP(,) at the point P(x) by translating the basis ( Qa (x)) 
at x into a set of linearly independent tangent vectors [d P (x) (Q, (x))} at P (x). 

In local coordinates we obtain 

where 

By completing this set of linearly independent tangent vectors to a basis of TpcX) (FM) 
we obtain a second-order non-holonomic frame at x. We have so obtained a non-holonomic 
parallelism of second order, which will be denoted by P’ (Q). 

Definition 7.4. A non-holonomic parallelism of second-order P is said to be aprolongation 
if P = P’(Q), where P and Q are the induced ordinary parallelisms. 

The local expression of P ’ (Q) becomes 

P’(Q)(?) = xi, P;, Qj, 
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Hence, p is a prolongation if and only if we have 

Notice that, if Q is integrable, then there exists local coordinates (x’) on M such that 
Q) = 6; and RJ.,k = (aPj’)/(axk), where P(x’) = (x’, Pi, Q), Rf,k). In such acase, p is 
said to be an integrable prolong&m 

There exists a geometric way in order to decide if a second-order non-holonomic par- 
allelism p is a prolongation or not. In fact, the induced parallelisms P and Q define 
two linear connections, respectively, denoted by rt and r:. We briefly recall their 
construction. 

If P = {PI,. , P,?} and Q = {Qt,. . . , Q,*}, then rt is defined by its covariant 
derivative: 

and, in a similar way, we define l-2 by imposing 

(v2)Q, Qt, = 0. 

Here VI and VZ are the covariant derivatives defined by rt and r2, respectively. 
In other words, we transport the tangent space rX,M by means of dP(x) and obtain a 

horizontal subspace at the point P(x) for every x E M and, then, we extend the horizon- 
tal spaces so obtained by the action of the Lie group GZ(n, R). The same is true for the 
parallelism Q. 

The Christoffel components of rt and r2 are respectively: 

(r,)jk = -(~-‘);s. a Q:,, cr2)jk = -(Q-‘):kg. 

The two connections r) and rz are flat, but in general they have non-zero torsion. As we 
know, the integrability of the parallelisms P and Q are equivalent to the vanishing of their 
torsion tensors. 

Remark 7.5. Notice that the horizontal subspaces at the points P(x) defined from the non- 
holonomic parallelism P ’ (Q) are just the ones corresponding to the linear connection ri . 

Moreover, the non-holonomic parallelism p induces an ordinary parallelism p on FM 
as follows. We define 

P(P(x)) = P(x), P(P(x)A) = F(x)(j(A)) = P(x)(A, A, 0). 

Notice that p takes values into F2hrl and, thus, it is in fact an invariant global section of 
%f : F2h4 -+ FM which is locally expressed by 

&xl, x;) = (x’, x;, Q;k(P-‘);x;, R:,,(P-‘)z.rj”(P--‘)~x~), 
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According to Section 7.1, p induces a linear connection A on M whose Christoffel 
components are 

Ajk = -R~~,y(P-');(Q-')~j, 

Thus, we have obtained from p three linear connections rt, r’ and A. The following 
result follows by a direct computation in local coordinates. 

Proposition 7.6. A second-order non-holonomic parallelism p is a prolongation if and 
only if the two connections r( and A coincide. 

Corollary 7.7. A second-ordernon-holonomicparullelism Is isan integrableprolongation 
ifund only if l3 has no torsion and the two connections rl and A coincide. 

The preceding corollary may be equivalently stated as follows. Let T2 be the tensor torsion 
of r2 and D = l-1 - A the difference tensor. Then we have the following: 

Corollary 7.8. 
(1) A second-order non-holonomic parallelism p is a prolongation if and only if D iden- 

tically vanishes. 
(2) A second-order non-holonomic parallelism p is an integrable prolongation if and only 

(f T2 and D simultaneously vanish. 

Corollary 7.9. An integrable second-order non-holonomic parallelism is an integrable 
prolongation. Furthermore, a second-order semi-holonomic parallelism is an integrable 
prolongution if and only ifit is integrable. 

Remark 7.10. Notice that the parallelism p on FM defines a set {I’, , F,f] of linearly 
independent vector fields on FM: 

Now, suppose that WC(M) is a non-holonomic G-structure of second order on M. 

Definition 7.11. We say that WC(M) is an integrableprolongation if there exists an adapted 
local section which is a non-holonomic integrable prolongation. 

Proposition 7.12. IfWc(M) is integrable, then it is an integrable prolongation. Conversely, ^ 
if 66 is an integrable prolongation second-order semi-holonomic G-structure, then it is 
integrable. 

It directly follows that if w,(M) is an integrable prolongation, then the projected G- 
structure WG (M) is integrable. 
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8. Jet of mappings and jet manifolds 

In this section, we shall give a brief review on jet manifolds (see [5,50], for instance). 
Let M and N be Coo manifolds of dimension m and n, respectively. Two Cc0 mappings 

f, g : M + N are said to be k-equivalent at a point x E M if their kth Taylor expansions 
at x agree. In this case, we say that f and g define the same k-jet j,f (or j,,f(,)f). 

Consider the set Jk (M, N) of all k-jets jJ of all mappings from M to N. If we choose 
local coordinates (x’) on M and (y”) on N, we obtain local coordinates (x’ , y”, yig ,,,i, ) for 

Jk(M, N), where 

ail+...+ir 

r,g.+ = axi, f” 
. . . ax& 

foranyr-tuple(it,...,i,) suchthatil +... + i, I k. Thus, Jk(M, N) becomes a Coo 
manifold. 

Notice that Jk(M, N) has several fibred structures. In fact, if r I k, there exists a canon- 
ical projection rr,” : Jk (M, N) --f J’(M, N) defined by n,k(jtf) = j:f. Also, there are 
canonical projections u : Jk (M, N) -+ Mandp: Jk(M, N) --+ N,givenbya(j,kf) = 
x, B(j,kf) = f(x); a and fi are called the source and target mappings, respectively. 

Let f : M --+ N be a Coo mapping. We define the k-jetprolongation off as the mapping 
jk f : M + Jk(M, N) given by jk f (x) = j,” f for any x E M. 

9. Lie groupoids 

Let us recall the definition of groupoid (we refer the reader to [64] for a good reference 
on groupoids; see also [23-26,28,29,62,63]). 

Let t3 a set. A groupoid over B is a set Q provided with two maps (II : i2 --f B and 
B : R - B and a law of composition satisfying the following conditions: 

(i) For Z, Z’ E 0, the product Z Z’ is defined if and only if (Y(Z) = B (Z’), and then 
B(Z Z’) = /3(Z), a(Z . Z’) = a(Z’). 

(ii) The triple product Z (Z’ Z”) is defined if and only if (Z Z’) . Z” is defined and, 
when one of them is defined, the associative law Z . (Z’ . Z”) = (Z . Z’) Z” holds. 

(iii) For each X E B, there exists an element 1~ E Sz such that 

(a) a(lx> = B(lx) = X, 

(b) if Z . lx is defined, then Z . lx = Z, 
(c) iflx.Zisdefined,thenlx.Z=Z. 

(iv) For each Z E Q there exists Z-’ E Q such that Z-’ Z = lx, Z. Z-’ = lr, where 
x = (Y(Z), Y = #J(Z). 

From the definition it follows that for every element X E B there exists a unique unity 

1 X, and every element Z E Q has a unique inverse Z-l. The set B is called the subset of 
unities of 52. 

A subset Q’ of a groupoid G is called a subgroupoid if R’ is a groupoid with respect to 
the law of composition of 52. 
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Next, we shall introduce differentiability. A groupoid fi over i? is called a dzfirentiable 
groupoid if: 

(i) R and B are differentiable manifolds. 
(ii) The maps cz : f2 --+ 23 and /3 : 52 -+ L? are submersions (and hence they are differ- 

entiable). 
(iii) The map Z + Z-’ is differentiable (and hence a diffeomorphism). 
(iv) For any differentiable manifold N and for two differentiable maps ,f, g : N - D 

such that (Y o f = B o h, the map f h : N - C2 defined by (f h)(u) = f(u) 
h(u) is differentiable. Hence, the product (Z, Z’) + Z . Z’, which is defined on the 
submanifold A = ((Z, Z’)lfi(Z) = cr(Z’)) c 0, is differentiable. 

Suppose that C2 is a differentiable groupoid. ~2 is called a Lie groupoid if the map 
(M, B) : fi --+ B x B, ((Y, /I)(Z) = (a(Z), /I(Z)) is a submersion. Notice that if (a, B) 
is a submersion, then CY and ,Cl are also submersions. If (a, @) is also surjective, then B is 
called a transitive Lie groupoid. If R’ is a submanifold of R such that Q’ is a subgroupoid 
of fi and a Lie groupoid over B, then R’ is called a Lie subgroupoid of Q. 

We now give some examples of Lie groupoids. 

Example 9.1. Let M be an n-dimensional manifold and denote by n’ (M, M) the manifold 
of the l-jets ji.,$ of local diffeomorphisms 4 from M to M. A direct computation shows 

that n’(M. M) is a Lie groupoid over M with the source and target maps, respectively, 
defined by cy(ji,,@) = x and ,B(jj,&) = JJ. 

Example 9.2. Let P be a principal bundle over a manifold M with structure group G and 
projection rr : P + M. We denote by J’(P) the manifold of l-jets jd,Q(L1)@ of local 

automorphisms 0 of P such that @(vu) = @(u)a Vu E P, Vu E G. Notice that J’ (P) c 
I7’ (P. P). We define an equivalence relation on J1 (P) as follows: jA,Q(U)@ - jAa,G(u)a@. 

Denote by j’ (P) the quotient space J ’ (P)/ G. If we define 

6Y([j,l,,,,,@l) = r(u), j([j,‘,,,,,@l) = n(@(u)), 

we can easily check that J’(P) is a Lie groupoid over M with source and target maps 
~5, B : J’(P) --+ M. Sometimes we will denote by j’ x b(X)@ the equivalence class of 

ji,Q(U)@, where x = n(u). With some abuse of notation jJ,@(X)@ will be called the l-jet 
of@ atx. 

Part II. Cosserat media 

10. Configurations and all that 

10.1. ConJgurations of Cosserat media 

A body B is a three-dimensional differentiable manifold which can be covered with just 
one chart. An embedding 4 : B + R3 is called a conjiguration of B and its l-jet ji,,,,,4 
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at X E B is called an injinitesimal conjiguration at X. We usually identify the body with any 
one of its configurations, say &J : B + R”, called a tzference configuration. Given any 
arbitrary configuration 4 : f3 + R3, the change of configurations K = 4 o $0’ is called a 
deformation, and its l-jet j&x,,~cxJ K is called an injinitesimal deformation at @o(X). 

For elastic bodies, the material is completely characterized by one function W which de- 
pends, at each point of B, on the gradient of the deformation evaluated at that point, namely, 

w = W(j:,K(~# . (7) 

The picture describing a Cosserat medium is more complicated. In fact, a Cosserat 
medium is the linear frame bundle FB of a body 13. I3 is usually called the macromedium 
or underlying body. With some abuse of notation, we shall call f3 the Cosserat continuum. 

A conjiguration of a Cosserat medium B is an embedding P : FB - FR’ of principal 
bundles such that the induced Lie group monomorphism 4 : Gl(3. R) - G/(3, R) is 
the identity map. Hence, P : FB - FR3 is a morphism of principal bundles such that 
P(%a) = P(&a for all % E Fl3. a E G1(3, R). Also, P induces a differentiable mapping 
1c, : I3 + R” in such a way that P covers @. The mapping $ is an embedding of B into 
R”. In particular, $ : B -+ R” is a configuration of the underlying body B. 

Remark 10.1. The condition P(%a) = III(T?)a means that !? transports the tangent space 
TxB of B at X = no(%) onto the tangent space T$(x,lw” 2 R3 of R” at g(X). In fact. if 
2 is a frame at X, i.e., a basis of TxB, then P(x) is a basis of R”. The above condition 
implies that this linear mapping does not depend on the choice of the linear frame _%. 

On the other hand, we have another linear isomorphism d+(X) : TxB - Td,c,(~,[w~ 2~ 
52”. 

Notice thatthe sub-bundle P(FB) of FR” isjusttheframe bundleof $(a), i.e., P(FB) = 

F($P)). 
Since we are dealing with equivariant embeddings, we can consider equivalence classes 

of the l-jets ji,P(x;, 9 according to Example 9.2. So, the I-jet ji,$cx,@ is called an 

infinitesimal configuration at X. We usually identify the Cosserat medium with any one 
of its configurations, say Iyo : FI3 - FL@, and we denote by $0 the induced mapping 
I/Q : B + R”. Notice that Po(FB) = F($o(B)). @O : FB - FR” is called a wference 
corlfiguration. Given any arbitrary configuration, 9, the change of configuration K = P o 
PC;’ is called a deformation, and its I-jet jAo(x),llr(x) I? is called an irzfinitesimal d<fhmation 

at @o(X). Notice that a deformation is a principal bundle isomorphism. We have of course 
a change of configuration of the underlying body 13, namely K = $ o $rO’, with the obvious 
notations for the induced mappings. 

From now on we make the following identifications: B Z @o(B) and FB 2’ Po(FB) = 

F($o(B)). 

Remark 10.2. A more general Cosserat media may be considered. In fact, we may consider 
deformations K such that .k(Xa) = K(X)cp(a), where (p : G1(3. R) --+ G1(3, R) is a Lie 
group isomorphism. 
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Our assumption is that the material is completely characterized by one function W which 
depends, at each point of B, on the 1 -jet of the deformation evaluated at the point X, namely, 

w = W(j&K). (8) 

Eq. (8) is called the constitutive law of the Cosserat continuum. 
The function W measures. for instance, the stored energy per unit mass. 

Remark 10.3. A Hamiltonian description for elastic simple bodies can be found in 
[6,45,65,66]. The corresponding description for media with microstructure was recently 
studied in [7]. 

10.2. Uniform Cosserat media. Material symmetries 

Suppose that an infinitesimal neighbourhood of the material around point Y can be grafted 
so perfectly into a neighbourhood of X, that the graft cannot be detected by any mechanical 
experiment. If this condition is satisfied with every point X of B, the Cosserat medium is 
said to be un$if~~. This physical property can be expressed in a geometrical way as follows. 

Definition 10.4. A Cosserat continuum B is said to be uniform if for two arbitrary points 
X and Y in B there exists a local principal bundle isomorphism P from FU onto FV, 
where U is an open neighbourhood of X and V is an open neighbourhood of Y such that 
ly(za) = P(&a, 2 E FU, a E G/(3, [w), the induced local diffeomorphism r,k : V --+ U 
maps X into Y, and 

for all infinitesimal deformations ji,K(U,K. 

Denote by G(X, Y) the collection of all l-jets j’ x,e(x,P satisfying Eq. (9). So, fin(B) 

is a subset of the Lie groupoid J”’ (FB), and if the Cosserat continuum B is uniform then 
J?(B) is a transitive subgroupoid of j’ (FZ?). Our assumption is that fin(B) is in fact a Lie 
subgroupoid, and this condition is the mathematical translation of the smooth uniformity. 

We denote by C-u : f?(B) - f3 and j : A?‘(B) -+ B the source and target mappings, 
respectively, which are in fact the restrictions of Cr and ,k?. That is, we have r?( ji ,,,(x) P) = X 

and B(ji,,,,,q) = @IX)). 

Definition 10.5. Given a material point X E B a material symmetry at X is a l-jet 
j$,,,,,P, where P is a local automorphism of FL? at X such that 9(Ya) = 9( ?)a 

VY E FL?, Va E G1(3, R), X is fixed by the induced local diffeomorphism I/J. and 

W(ji.,&) = W(j:,& . .ii,,*) (10) 
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We denote by c(X) the set of all material symmetries. It is easy to check that G(X) is a 
group with the composition of jets which is called the isotropy group or group of material 
symmetries at X. 

Now, fix a point Xc in B and put fix0 (f3) = 15-l (X0). Then we deduce the following. 

Proposition 10.6. 
(i) G(Xu) is a Lie group. 

(ii) a,~,(@ is a principal bundle over B with structure group G(Xu) and projection 6. 

Pro@ Since 

n&)(a) =&(X0). 

we deduce that fix,(B) is closed and in fact a closed submanifold of fi(B), since a is a 
surjective submersion. Furthermore, we have 

G(X0) = (k, B)-‘(X0, X0), 

and then G(Xu) is a closed submanifold, since ol x B is a surjective submersion. Hence, 
G(Xu) is a Lie group from the Cartan theorem. 

There exists an action of G(Xu) on a,~, (f3) on the right which is given by composition 
of jets. Since (6, b) : i?(B) -+ B x B is a surjective submersion there exists an open 
covering (U,) of B and local sections of (6, B), a,,b : U, x ub + G(B). 

Suppose that Xc E U,,, and define a, : U, - fix,,(B) by a,(X) = cr,,,,(Xu, X). 
We obtain diffeomorphisms A, : U, x G(Xo) - (&‘(Ua) defined by A,(X. Z) = 
a, (X) . Z. A direct computation shows that the family {U,. A, ) defines a principal bundle 
structure on fix0 (B) with structure group I and projection b, for which {A,} are local 
trivializations. The local sections (a,} are adapted for the G(Xc)-bundle structure. 0 

We have proved Proposition 10.6 by using a slight modification of the standard proof in 
the case of simple bodies (see [ 18,191 and the book of Fujimoto [49]). 

A local section c : U c B x B - fi(f?) of ((Y, B), where U is an open subset of 
t3 x B, will be called a local uniformity. In such a case we say that f3 enjoys locally smooth 
unzformity. A global section c will be called a global uniformity, and, in that case, we say 
that f? enjoys smooth global uniformity. 

The assumption of the Lie groupoid character of G(B) is, in fact, the mathematical 
translation of the smooth uniformity. 

Next, we consider the set Q(f?) of all the 1 -jets j ’ I/I of local diffeomorphisms of f3 
induced from the elements of n(B). It is not hard to prove that D(B) is a Lie subgroupoid 
of nt (B, B), provided that fin(B) be a Lie groupoid. We denote by w and p the source and 
target mappings which are in fact the restrictions of a, B : I7’ (f3, B) --f B. Moreover, the 
canonical projection 

is a groupoid morphism. 
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We also consider the set G(Xu) of the induced local isomorphisms from the elements of 
G(Xu); G (X0) is a group. Next, we put .Rx, (B) = p-t (X0). Proceeding in a similar way 
than above, we can prove the following. 

Proposition 10.7. 
(i) G(Xu) is a Lie group. 

(ii) ax0 (t?) is a principal bundle over B with structure group G(Xo) and projection ,t3. 

In fact, the sections rn : U, + i2x,(f3) defined by ra = h o oh are adapted for 

Qx0 (a). 
The following construction is also standard in the theory of G-structures and Lie groupoids 

[18,19,49]. 
Suppose that .& = jJ,,Q(e,) 0 E F213 is a non-holonomic frame of second order at 

X0. (In particular, 20 may be a holonomic frame.) Define a map h : G(Xu) --+ G=(3), - - 
by h(Z) = 20’ ?Z . 20. (To do the above jet composition we choose a representative of 
the equivalence class modulo Gl(3, [w), and the final result is independent of that choice.) 
Then h is differentiable and G = &(G(Xu)) is a Lie subgroup of G*(3). G is called the 
isotropy group of the Cosserat medium B. It is uniquely defined up to conjugation (see 
Remark 10.13). 

Next, let {U,} be the open covering obtained in the proof of Proposition 10.6. We can 
assume that a,,(Xo) is the identity of G(Xu) (if that is not the case, we define o:(X) = 
ran . cr,,(Xo)-‘). For a point X E u, fl ub we have Q(X) = OQ(X)&b(X), where 
g&(X) E G(Xu). If we put S,(X) = a,(X) 20, we deduce that S, : U, --f F2f3 and 

sb(x) = &z(x) ’ ~&b(X)). 
Therefore the family (U,, S,) defines a second-order non-holonomic G-structure 0~ (I?) 

on B with transition functions (h(&,)). 
The principal bundles fix,(B) and 0~ (B) are isomorphic. 
Now, we put X0 = %f(&). Hence Xo is a linear frame at Xo. As above, we define 

a map h : G(Xo) + Gl(3, R), by h(Z) = Z,’ . Z . ZO. Then h is differentiable and 
G = h(G(Xo)) is a Lie subgroup of Gl(3, [w). 

Also, let (5,) be the local sections obtained by projection from {a,] (see Proposition 
10.7). We have new local sections {Tel] which define a G-structure we(B) over B with 
transition functions (h&b)]. This G-structure is in fact the canonical projection of the 
second-order non-holonomic G-structure WC (B). 

A section S, of F2B will be called a local uniform reference. If there exists a global 
section S of F21? it will be called a uniform reference. Notice that a (global) uniformity 
induces a global section S of F2B. 

Jf we suppose that the Cosserat continuum enjoys smooth global uncformity, then there 
exists a global uniformity cr : B -+ fix,(B) which induces a global section S : 8 - 
G&L?). The second-order non-holonomic G-structure is obtained by enlarging the global 
section S by means of G. Of course, we have induced global sections t : f3 --+ f2~,(B) 
and T : I? -+ mG(a). Therefore, the projected G-structure is obtained by enlarging T 
by G. 
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Definition 10.8. A non-holonomic frame of second-order 20 at X0 will be called a refer- 
ence crystal. 

Summarizing the results we deduce that, associated with a uniform Cosserat continuum 
t? there exist: 
(i) a second-order non-holonomic G-structure WC(B) on B; 

(ii) a G-structure WC(B) on 23, obtained from we(B) by projection, with structure group 
G = prz(G). 

Remark 10.9. Since the canonical projection n, -2 : F2B -+ FB is a principal bundle 
homomorphism, then the G-structure W&B) defines via the projection 75; a G’-structure 
wl,, (B) on B, where G’ = prl (G). In fact, if we assume that 13 enjoys global smooth unifor- 
mity, then w’,,(B) is constructed by prolongating a global section P : f3 - Fl? obtained 
by projecting the second-order non-holonomic parallelism S by means of the Lie group G’. 

10.3. Homogeneous Cosserat media 

As we have seen, a Cosserat continuum is uniform if the function W does not depend 
on the point X. In addition, a Cosserat continuum is said to be homogeneous if we can 
choose a global uniform reference which is constant on the body. In a more precise way, 
we introduce the following definition. 

Definition 10.10. A Cosserat continuum B is said to be homogeneous with respect to a 
given reference crystal 20 if it admits a global deformation K, with an induced diffeomor- 
phism K on B, such that p = K-’ induces a uniform reference P, i.e., 

P(X) = j&J-’ o Fr,(x)), VX E B, 

where rK(x) : If@ + R3 denotes the translation on [w’ by the vector K(X) and Ft,(x) is the 
induced map. B is said to be locally homogeneous if every X E B has a neighbourhood which 
is homogeneous. It is obvious that if B is homogeneous, then it is locally homogeneous. 

We shall prove that this definition is independent on the choice of reference configuration. 
We also study what happen if we change the reference crystal. 

Theorem 10.11. If B is homogeneous then WC (FB) is an integrable prolongation. Hence 
WC(B) is also integrable. Conversely, ifGc(B) is an integrable prolongation then t3 is 
locally homogeneou,s. 

Proofi Assume that B is homogeneous. Hence, there exists a global deformation K which 
may be used in order to define a global uniform reference S. If we take local coordinates 
(xi) on B given by the induced diffeomorphism K, we deduce that S is locally expressed 

by 
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i 

i 

S(x’) = xi, P,‘(x), sj, 3 ( 
) 

where P(x’) = (x’, Pj (x)) is the local expression of the linear parallelism P. Therefore 
WC (L?) is an integrable prolongation. 

Conversely, if &c(a) is an integrable prolongation, then there exists a local adapted 
section S around each point of f3 which is an integrable prolongation. Thus, we can choose 
local coordinates (xi) such that S(x’) = (xi, Pj (x), $, 3 Pj/a.xk). Hence, we can take a 

local deformation K defined by K (x’ , x,;) = (xi, PL.xf ), which implies the local homogeneity 
of B. 0 

Remark 10.12. Notice that if B is homogeneous, then the macromedium is also homo- 
geneous. Obviously, the converse is not true. In fact, the integrability of the G-structure 
w,(a) does not imply the prolongability of wc(EJ). We also notice that the homogeneity 
of a Cosserat medium B does not imply the integrability of the G’-structure w&(B). 

Remark 10.13. (1) If we change the point X0 to another point X& then we obtain an 
isomorphic G-structure. In fact, we take a local uniformity S joinning X0 and Xh and. next, 
a crystal reference obtained by composing 20 with S. 

(2) We have fixed a reference configuration 00. Suppose that @t is another reference 
configuration such that the change of configuration is given by P = @I’ o @u. Therefore, 
by using @I, the change of reference configuration rP yields an isomorphism between the 
respective G-structures, provided that the reference crystal 20 at X0 is transported via P 
to a reference crystal j&,c,co,,(P o Y), where .%J = jd,,co,Y. Hence, the homogeneity 
is indifferent to a change of reference configuration. By the way, observe that the isotropy 
group G remains the same. 

(3) Finally, suppose that we change the reference crystal .& to another reference crystal 
2;. In other words, we choose another non-holonomic second-order frame .?A at X0. Hence 
wegetS:(X)=a,.Z;,=o,(X).Zo.(A,B,C),sinceZ;,=Zo.(A,B.C),(A.B,C)E 
G*(3). We deduce that the new G’structure is conjugate to the original G structure, and 
the isotropy groups G’ and G are conjugate, namely 

t? = (A, B, C)6(A, B, C)-‘, G,,(B) = G,(B)(A, B, C). 

As we know, if one first-order G-structure is integrable, the same holds for all conjugate 
G-structures. However, if a G-structure is integrable (or an integrable prolongation), a 
conjugate G’-structure may fail to be also integrable (or an integrable prolongation). We can 
easily check this fact by considering, for instance, an integrable non-holonomic parallelism. 
Our present definition of homogeneity is given with respect to a fixed reference crystal. 
Indeed, if we change from a reference crystal .%J to another 2; then the homogeneity does 
not hold, in general. 
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11. Cosserat media with global uniformity 

Along this section we shall suppose that f3 enjoys smooth global uniformity. This means 
that there exists a global uniformity a which induces a global uniform reference S, i.e., a 
second-order non-holonomic parallelism on B. 

Then we have the following parallelisms: 
(i) a second-order non-holonomic parallelism S : I3 + F*f? on B; 

(ii) a linear parallelism P : B --+ FB on B defined by the projection of S, namely P = 
5; 0 S; 

(iii) a linear parallelism Q : 23 -+ FB on B defined from the “underlying uniformity”, 
namely Q = 5: o S. 

Of course, S is semi-holonomic if and only if Q = P. 
Notice that the G-structure &c(B), the G’-structure o&(B) and the G-structure we(B) 

are obtained by enlarging the corresponding global sections S, P and Q, by the Lie groups 
G, G’ and G, respectively. 

For a point X E B, P(X) and Q(X) are linear frames at X on 13 and S(X) is a non- 
holonomic frame of second order at X. In local coordinates we have 

P(2) = (2, P;(d)), QG’, = b’, Q:(x’),, 
S(2) = (2, $(x’), Sfj(X’), SJ:,J2)), 

where Sj = Pj and S f j = Qj 
From now on, we shall adopt the following notation: 

S(x’) = (xi, Pj’, Q;, R;J, 

where Rjk = Sj k. 
The parallelism P determines three linearly independent vector fields (PI, P2, P3} on B 

which can be locally expressed as 

P defines a linear connection rt whose Christoffel components in a coordinate system (xi) 
on B are: 

(l-1)$ = -(P-l); g. 

The linear connection rt has torsion Tt but no curvature. We notice that the connection 
rt is an adapted connection to the parallelism defined by P, and, hence, it is adapted to the 
G’-structure w’,,(B). Furthermore, we know that P is integrable if and only if rl is locally 
flat. 

In a similar way, the parallelism Q determines three linearly independent vector fields 
{ Qt , Q2, Q3) on B which can be locally expressed as 
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Q defines a linear connection f2 whose Christoffel components are: 

I (r2)jk = -(Q-'); s. 
As above, r2 is an adapted flat connection to the parallelism defined by Q and, it is also 

adapted to the G-structure WC(B). As we know, Q is integrable if and only if r2 is locally 
flat. The torsion tensor of r2 will be denoted by T2. 

According to Section 7.1, S induces a global invariant section S : FL3 + F2f3 and, 
hence, a third linear connection l-3 whose Christoffel components are: 

(r& = -R;,(P-‘);(Q-‘);. 

Consider the difference tensor D of the two connections rt and r3, i.e., D = Vi - V3. 
where Vt and Vs are the covariant derivatives of rr and f3, respectively. T2 and D will be 
called the inhomogeneity tensors. 

The geometric characterization of the local homogeneity is as follows. 
First, we consider the case of Cosserat media without symmetries, i.e., the Lie group 

G is trivial, G = ((1, 1, O)]. In that case, the G-structure Wd(f3) is a second-order non- 
holonomic parallelism S on B. As a consequence, the G-structure UC(B) and the G’- 
structure w&(a) are ordinary parallelisms on a, which will be denoted by P and Q, as 
above. From Theorem 10.11 and Corollary 7.8 we obtain the following result: 

Theorem 11.1. B is locally homogeneous if and only if the inhomogeneity tensors identi- 
cally vanish, i.e., T2 = 0 and D = 0. 

Remark 11.2. Notice that a section S of e2 : F2t3 -+ B may be valued into F2t3 or 
F2B. But if the symmetry group G is not semi-holonomic neither holonomic, then the 
G-structure We (a) is a genuine non-holonomic structure. 

If the isotropy group G is not trivial, we deduce from Theorem 10.11 and Corollary 7.8 
the following result: 

Theorem 11.3. B is locally homogeneous if and only if there exists an adapted local section 
on which T2 and D are identically zero. 

12. A classification of Cosserat media 

In this section we shall consider two particular cases of Cosserat media. 
First of all, we shall give an alternative description of the constitutive Eq. (8). 
Notice that a 1 -jet Ji,K(X) K may be represented as a triple (p, q, r), where 

p; = /+a), q; = $-“), 
a2 

rjk = ----$-(x’), 

with K(xi, xj) = (Ku@), K~(x’)), 1 5 i, j, k, a, b ( 3. 
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Therefore, we can write the constitutive equation as follows: 

w = W(P, q, r; XI, (11) 

i.e., W = W(p(X), q(X), r(X)), where p(X) = q(X), q(X) = (VK)(X), and r(X) = 
(VP)(X), cp = (I$). We are using here a slight different notation in order to connect 
with the usual notations in Continuun Mechanics (see [69,80,X1], for instance). There the 
dependence on the point in B is explicitly indicated, but this dependence automatically 
appears if we use a jet formulation. 

We can distinguish three different kinds of Cosserat media: 
(i) Holonomic Cosserat media. They are defined by the condition 

at every point X E 8. We then have 

a2 
a2K’ J 

ad axjaxk ’ 

and the constitutive equation becomes 

i.e., we are in presence of a material of second grade: 

w = W(p, vp; Xl. (12) 

For the sake of consistence of the constitutive equations, the admissible uniformities 
must be of the same kind, and, therefore the material symmetry group is actually a Lie 
subgroup of the second-order holonomic group G2(3). 

(ii) Semi-holonomic Cosserat media. They are defined by the condition 

aK’ 
K;=a,l 

only at the point X. Hence. 

for all points Y # X, and the constituive equation becomes 

i.e.. 

w = W(p. vp; X). (13) 
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Eqs. ( 12) and (13) are apparently the same. In spite of that, note that the meanings of 
p and Vp in both equations are completely different. In fact, Eq. (13) means that W 
does not depend on the macromedium. 

As above, for the sake of consistency, the admissible uniformities must be of the same 
nature, and the material symmetry group is actually a Lie subgroup of the second-order 
semi-holonomic group 6* (3). 

(iii) Strictly non-holonomic Cosserut media. They are defined without conditions. 

12.1. Homogeneity of semi-holonomic Cosserat media 

In this case, the second-order non-holonomic G-structure W&B) is in fact a reduction of 
the second-order semi-holonomic frame bundle F2(B), i.e., tic(B) is a second-order semi- 
holonomic structure, provided that we have chosen a semi-holonomic reference crystal. 
Thus, &c(B) c f"(B) and G c G’(3). In such a case we shall use the notation &e(B) for 

the reduced bundle and 6 for the structure group. 
If we suppose that B enjoys smooth global uniformity, we deduce that there exists a 

second-order semi-holonomic parallelism S : B + F*l?. The induced global parallelisms 
P : I3 --+ FB and Q : f3 + FB coincide. 

We can write in local coordinates S(x’) = (xi, P,!(x’), R:e(x’)) and P(x’) = 

(xi ( P/i (x’)). 
We deduce that the two linear connections rt and r2 are the same, namely f = rt = 

Consider again the diference tensor D of the two connections r and r3, i.e., D = V - V3, 
where V and V3 are the covariant derivatives of f and l-3, respectively. Remember that 
I- is the linear connection defined from the projected parallelism P. Its torsion tensor will 
be denoted as above by T, and, the two tensors T and D will be called the inhomogeneity 
tensors. 

Now, Theorems 11.1 and 11.3 have the same form: 

Theorem 12.1. 
(1) If the isotropy group is trivial, then B is locally homogeneous if and only if the inho- 

mogeneity tensors T and D simultaneously vanish, i.e., T = 0 and D = 0. 
(2) In the general case, t3 is locally homogeneous if and only if there exists an adapted 

local section on which the inhomogeneity tensors simultaneously vanish. 

12.2. Homogeneity of bodies qf second grade 

In this case, all the configurations K and the local isomorphisms given by the uniformity 
property of the Cosserat medium B are natural prolongations to the frame bundle of the 
induced diffeomorphisms on the basis, i.e., /7 = FK and ly = F$, and the response 
functional W may be written as follows: 
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since 2 = F(K), or, equivalently, 

W = W(F, VF; X), 

where F = VK. Therefore, we are in presence of a material body of second grade (see 
[17-191). 

Furthermore, if we choose a second-order frame ZO at a point X0 as above, we obtain a 
second-order &structure &c(B) on B. If we suppose that B enjoys smooth global unifor- 

mity, we deduce that there exists a second-order parallelism S : B -+ F*t3. We can write 
in local coordinates S(x’) = (xi, Pi(xr), Rjk(x’)), where Rfk = RBj. 

The induced global parallelism P : B + Fl3 is given by P(x’) = (xi, P,! (x’)), and, as 
in the previous case, we have P = Q. 

Now, the connection A induced by S is symmetric and T = 0. We can consider the 
difference tensor D of the two connections r and r3, i.e., D = V - V3, where V and 
V3 are the covariant derivatives of r and r3, respectively. Remenber that f is the linear 
connection defined from the projected parallelism P. Since r is symmetric we deduce that 

T=O, D=O++D=O. 

We call D the inhomogeneity tensor. Now, Theorems 11.1 and 11.3 read as follows: 

Theorem 12.2. 
(1) If the isotropy group is trivial, then B is locally homogeneous if and only if the inho- 

mogeneity tensor D vanishes. 
(2) In the general case, I3 is locally homogeneous if and only if there exists an adapted 

local section on which the inhomogeneity tensor vanishes. 

12.3. More about homogeneous Cosserat media 

In Definition 10.11 we have introduced a notion of homogeneity with respect to a given 
reference crystal. We now give a general notion of homogeneity. 

Definition 12.3. A Cosserat medium B is said to be (locally) homogeneous if it is (locally) 
homogeneous with respect to some reference crystal. 

Consider now a change of reference crystal. This means that we choose another non- 
holonomic frame of second-order 26 at the point X0. Hence, we have 26 = &(A, B, C), 
where (A, B, C) E c*(3). Therefore, the new second-order non-holonomic parallelism 
S’ is given by S’ = S(A, B, C), where S is the second-order non-holonomic parallelism 
obtained from 20. We obtain 

s’(x’) = (x’, PiA;, Q;Bi”, P;IY~“~ + R;,,A;B;). 

A direct computation shows that the Christoffel components of the new three linear con- 
nections rt’, r; and r;, are: 
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(r;)jk = u-,)jk, (@jk = (fi)jk, 

(rj);, = (F3)jk - P$&(A-‘);(P-l);(B-‘):of. 

161 

where (ft )j, , ( rz)il., and (f3):., are the Christoffel components of the three linear connec- 
tions induced from S. 

From these expressions we obtain 

T; = T2, (14) 

(D’)jk = D;, + PjC;s(A-‘);(P-‘);(B-l);(Q-‘)f. (15) 

If T2 = 0 and D = 0, we know that B is locally homogeneous. From (14) we deduce 
that T2 = 0 if and only if T; = 0. If D # 0, then the Cosserat medium 23 is not locally 
homogeneous with respect to 20, but we can search for a change of reference crystal on 
which D’ = 0, and, hence, B would be locally homogeneous with respect to that new 
reference crystal. 

We have 

D’ = 0 M Dj, = -pdC~s(A-l):(p-‘);(B-‘)~(Q-l)~ 

w D” (p-l)’ p”Q; = a! “W Jk’ 

(where ;!kJ= -($,(A-*);‘(B-‘)r = constant) 

* D(Qj, pk) =~Gf’u, with the g’s constant 

-VtDjk ~0, where Djk = D(Qj, Pk), 

where VI denotes the covariant derivative defined by ft. Here Djk = D(Qj, Pk) are not 
the components of any tensor. In fact, D is a tensor field of type (1,2) and Djk is the vector 
field obtained by applying D to the two vector fields Qj and Pk. Thus, Vt Djk are 1 -forms. 

Thus, in order to obtain a new reference crystal with respect to which B would be locally 
homogeneous, we can proceed as follows. First, we compute the nine covariant derivatives 
VI Djk. If they simultaneously vanish, we take the reference crystal .& = go(A, B, C), 
where 

crjlk = -&(A-‘)j’(B-‘)p, 

D(Qj, Pk) = aU.Pu. k/ 

There exist, of course, many possible choices. From the above discussion, we deduce that 
D’ = 0 and we conclude that B is locally homogeneous with respect to 26. 

Consider a change of configuration K(J?, .xj) = (&(.x0), K;(x~)_$). The second-order 
non-holonomic parallelism S’ defined by using that new configuration is given by 

(16) 
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Now, suppose that B is locally homogeneous, or, equivalently, T2 = 0 and D = 0 in the 
first configuration. Hence, we can choose local coordinates around each point in B such that 

(see Section 7.4). Thus, we have 

i.e., S is an integrable prolongation of P. Next, we perform the change of configuration 
(x’, xf) - (2, (Ppl)$f). From (16) we obtain 

S’(X) = (X, 11 1.0). (17) 

or, in other words, we have found a configuration on which S have constant components. 
Observe that Eq. (17) means that the first and third matrices in S’ with respect to the basis 
{PI, P2, P3) are (1) and (0) and. the the second matrix in S’ is (1) with respect to the local 
coordinates (x’). 

Conversely, let us suppose that there exists a configuration on which S has constant 
components, namely S(X) = (P(X), Q(X), R(X)), where P(X), Q(X) and R(X) are 
constant. If P(X) = A, Q(X) = B and R(X) = C, where (A, B, C) E G2(3), then we 
can perform a change of reference crystal by means of (A, B, C)--’ such that the new non- 
holonomic second-order parallelism is S’(X) = (1, 1,O). Consider an arbitrary change of 
reference configuration i (x’ , xj ) = (K (x’), K[ (x”)x,f ). With respect to the new reference 
configuration we have 

which shows that B is, in fact, locally homogeneous. 
Summarizing the above discussion, in order to check the local homogeneity of a Cosserat 

medium, we have to pick an arbitrary adapted section and compute the two tensors D and T2. 
If T2 # 0, the material is not homogeneous. If T2 = 0, but D # 0 we have a chance. In fact, 
we must compute the nine covariant derivatives VI Djk. If all them vanish, we can perform 
a change of reference crystal in order to obtain an homogeneous configuration. Of course, 
this discussion holds when the isotropy group is trivial. If the isotropy group is continuous 
(even not trivial) we have an additional degree of freedom. Thus, in order to decide about 
the local homogeneity, we must consider the existence of alternative adapted sections on 
which the inhomogeneity tensors would vanish. As in the case of simple materials, we can 
obtain in some cases a complete answer by using geometrical results on the prolongability 
of second-order non-holonomic G-structures (see [37] and Section 13). 

Remark 12.4. It is important to distinguish between changes of coordinates and changes 
of configurations. For simple media, there are no mathematical differences, since a change 
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of coordinates is a local diffeomorphism which can be interpreted as a local change of 
configuration, and conversely. However, for Cosserat media, there is a subtle difference. 
In fact, a deformation is a morphism of principal bundles, but not every morphism of 
frame bundles is of the form 17 = FK. This situation occurs only in the case of holonomic 
Cosserat media. Thus, the existence of a constant uniform reference S does not imply that 
S is integrable, it only implies that S is an integrable prolongation. 

13. Homogeneity of particular Cosserat media 

Throughout this section we shall consider local homogeneity with respect to a fixed 
reference crystal (see Section 12.3). 

13.1. Cosserat-Toupin media 

We call a second-order non-holonomic G-structure on B a Cosserat-Toupin structure 
when the structure group of the Cosserat medium is a Toupin subgroup. 

We put G = (Gl, G~.(Y(GI. G2) - Glcr), where GI and Gz are Lie subgroups of 
G/(3, [w) and (Y is a given element of B’(3). Since G is the conjugate subgroup of the 
subgroup (G I, G2.0), then the G-structure W&B) is conjugate to the (G I, G:, 0)-structure 
W. We then only consider the case (G I, G2,O). 

Notice that there exist two projected G-structures, namely, a G 1 -structure WI obtained 
by enlarging P by means of G 1 and, a GT-structure 0~2 obtained by enlarging Q by means 
of G2. 

Recall that W is defined by enlarging the global section S : I? + F2L3 to the whole group 
(G 1. G2,O). Denote by rl, l3 and r3 the three linear connections introduced in Section 13. 

Suppose that I? is locally homogeneous. Hence, W is an integrable prolongation and, then 
there exist local coordinates (xi) and a local section s locally expressed by 

Therefore, we obtain S(x’) = (x’ 
A E G1, B E G2, which implies 

PJ = p f A;, Qj = B;, 

A direct computation yields: 

(f,)jk = -(p-I)$$ - (A 

(r2)jk = -(B-$$ 

(rx)$ = (p-$& 

Pi. Qj, Rjk) = (xi, p;, S;, ap~/axk)(A. B, O), where 

(18) 

(19) 

(20) 
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From (20) we deduce that r3 coincides in the coordinate neighbourhood with the flat 
connection defined by the local parallelism p(x’) = (x’, pj(x)). Therefore, r’ is a flat 
G 1 -connection. 

Moreover, w2 is integrable, i.e., the macromedium is locally homogeneous. 
Conversely, suppose that the macromedium is locally homogeneous, i.e., w2 is integrable 

and r3 is a G 1 -connection. 
Since 04 is integrable, then there exist local coordinates (x’) on B such that a(_?) = 

(x’, 1) E 04. Hence, we have S(x’) = (x’, Pj, Qi, Rf,), where (x’, Qi) = (x’, 1)B = 

(x’, Bj) for some B E G2. Thus, we have that (Ql. = B;) E G2. We construct a local 
section 

s(xi) = S(x’)(l, B-l, 0) = (xi, P;, 1, Rj,(Q-‘);), 

which is also adapted to W since (1, B-l, 0) E (Gt , G2,O). The point now is to find a 
local section a(x’) = (xi, $, 1, rj’,) such that .r(?) = a(x’)(A, l,O), where A(x’) E 

Gl, rjk = (ap;)/(&). 
If such a section exists, then we have 

Pj = #A;, R,,(Q-');; = r&A;. 

From (21) and by a direct computation, we deduce that 

(A-‘)’ 
aAU app 

J - (p-l)i > = R!’ (p-‘)’ (Q-l)s. 
0 axk 0 axk JS a k 

(21) 

(22) 

Since ft and r3 are Gt -connections we deduce that the right-hand side of Eq. (22) 
belongs to the Lie algebra TV 1 of G 1. Therefore, Eq. (22) has a solution A in G 1 and we are 
able to construct the required section o. 

Thus, we have proved the following: 

Theorem 13.1. If B is locally homogeneous, then the macromedium is also locally home- 
geneous and r3 is a flat G 1 -connection Conversely, if the macromedium is locally homo- 
geneous and r3 is a G 1 -connection, then B is locally homogeneous. 

Assume that B is a holonomic or semi-holonomic Cosserat medium. This means that 
Gt = G2 = G, P = Q and rt = T2. In that case, Theorem 13.1 reads as follows: 

Corollary 13.2. Let B be a holonomic or semi-holonomic Cosserat medium. Then, ifL3 is 
locally homogeneous, the macromedium is also locally homegeneous and r3 is a locally 
flat G-connection. Conversely, if the macromedium is locally homogeneous and r3 is a 
G-connection, then B is locally homogeneous. 

13.2. (1, 1, X(1,1))-structures 

Suppose that the isotropy group is G = ( 1, 1, C( 1~1)). 
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Consider a (1, 1, C(t,t))-structure W&B) on B. In that case, G = G’ = (l}, or, in 
other words, the induced G-structure we is the linear parallelism Q and the induced 
G’-structure w&(B) is the linear parallelism P. 

Denote by rr, r2 and f3 the three linear connections defined from the second-order 
non-holonomic parallelism S. We can define for each a E Z(r, 1) a linear connection on B 
as follows. Consider the global section S, = S (1, 1, a), i.e., 

&z(x) = (x, P;(X), Qj(d R;k(x))(L 1,~) 

=(x, P;(x), Q;(x), R;&) + P;(x)olj;c). 

Of course, if we consider a function (Y : I? - C(t,r) we can also define a section S, as 
above. 

The global section S, determines a new linear connection f3,(y which in an arbitrary 
system of coordinates has Christoffel components 

(I-s,& = -(& + P;c&)(P-‘);(Q-I); = (l-3& - P~a~s(P-‘);(Q-‘),s. 

Notice that I”3.0 = r3. 
Now, suppose that B is locally homogeneous. Hence, there exists an adapted section 

s which is an integrable prolongation. This means that there exist local coordinates (xi) 
around each point of f3 such that 

is an adapted section. Hence, we have 

S(x’) = (xi, P;,Qj,Rj,,= (~~.~,l,~)(l,l,c~(~‘)) 

apt 

for some element do E C(r.1). 
Consequently, we obtain 

Therefore, the Christoffel components of the three linear connections rr , l3 and f3 in 
these coordinates are the following: 

(r,)jk = -(p-l)$$i, (23) 

(h)jk = 0, (24) 

u-3)jk = -(p-l,g - p;(Yp,(p-‘);. (25) 



166 M. Epstein, M. de Leo’n/Journal of Geometry and Physics 26 (1998) 127-170 

From (25) we deduce that 

u-3& = u3jk - p;u;;tp-9;. (26) 

from which we have that l-3,-a = l-1 on the domain of the local coordinates (x’). 
By the way, observe that the macromedium is locally homogeneous since the 

torsion tensor TZ of r2 vanishes, which is equivalent to the integrability of the linear paral- 
lelism Q. 

Conversely, suppose that the macromedium is locally homogeneous and that there exists 
a function a! : f3 + C(I. 1) such that rli,, = lj . 

Since WC(B) is integrable, i.e., Q is integrable, then there exist local coordinates (xi) 
around each point of I3 such that the local section s(x’) = (xi, 1) is adapted to oc(f3), or, 
equivalently, Q(x’) = 1. Thus, we obtain S(.x’) = (x’, Pj, 1, Rjk). 

Next, since & = ft we obtain 

Therefore, the section S, is an integrable prolongation, since 

S&x’) = (xi. P;, 1. R;k + P@k). 

We can summarize these results in the following theorem. 

Theorem 13.3. Suppose that B is locally homogeneous. Then the macromedium is locally 
homogeneous. Moreover; there exists a local coordinate system (xi> around each point of 
B and a local,function a(~‘) taking values into C(1.1) such that (l-3,_a)jk = (fl)jk, or; 

in other words, the connections T3.-oI and rl coincide on the domain of the coordinates 
(x’ j. Conversel.y, [f the macromedium is locally homogeneous and there exists a ,function 
u : I3 + Ccl, 1) such that r3.cr = rl, then t3 is locally homogeneous. 

If B is holonomic or semi-holonomic, then P = Q and rt = fz. In that case, Theorem 
13.3 reads as follows: 

Corollary 13.4. Let t3 be a holonomic or semi-holonomic Cosserat medium. [f L3 is locally 
homogeneous, then the macromedium is locally homogeneous and, ,further; there exists a 
local coordinate system (xi) around each point oft? and a localfunction c~(x’) taking values 
into X(1.1, such that (T’3._a)jk = -oIJk, or; in other words, the matrix qf the Christoflel 
components qf r3 belongs to C(1.1). Conversely, if the macromedium is locally homoge- 
neous and there exists a function (;Y : B + .X(1,,) such that r3.01 = l-1, then I3 is locall) 
homogeneous. 

13.3. The general case 

Suppose that G = (Gt , G2, C) is a Lie subgroup of G’(3), where Gt and G2 are Lie 
subgroups of Gl(3, R), and C c B’(3). We assume along this section that (Gt , G2,O) is 
a subgroup of G. 
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Theorem 13.5. Suppose that L3 is locally homogeneous. Then the macromedium is locally 
homogeneous. Moreover there exists a local coordinate system (x’) around each point qf 
I3 and a local function a(xi) taking values into C such that (T’j,_,)j, = (rl)jk, or; in 

other wards, the connections r3,_ol and lj coincide on the domain qf the coordinates (xi). 
Conversely, (f the mucromedium is locally homogeneous and KJ is a G 1 -connection, then 
B is locally homogeneous. 

ProoJ: The proof follows the same lines that Theorems 13.1 and 13.3 taking into account 
that (Gt , G2.0) is a subgroup of G. c) 

Acknowledgements 

This work has been partially supported by DGICYT (Spain), Proyecto PB9 l-0142, Pro- 
grama de Sabaticos, SAB93-0123 and NATO Collaborative Research Grant (no. CRG 
950833). We acknowledge the referee for his valuable suggestions and remarks which 
have considerably inproved this paper. 

References 

[I J E. Aguirre-Daban and I. Sanchez-Rodrigues, On structure equations for second order connections, 
in: Differential Geometry and Its App1ication.s. Proc. Con$ Opava (Czechoslovakia, August, 1992) 
(Silesian University, Opava, 1993) pp. 257-264. 

121 S.S. Antman, Nonlinear Problems of ElasticiQ, Applied Mathematical Science, Vol. 107 (Springer, 
New York, 1995). 

131 D. Bernard. Sur la geomttrie differentielle des G-structures, Ann. Inst. Fourier IO (1960) 151-270. 
141 B.A. Bilby, Continuous distributions of dislocations, in: Progress in Solid Mechanics, Vol. I (North- 

Holland, Amsterdam, 1960) pp. 329-398. 
[5] E. Binz. J. Sniatycki and H. Fisher, Geometry of Classical Fields, Mathematic Studies Series. Vol. IS4 

(North-Holland, Amsterdam, 1988). 
[6] E. Binz and H.R. Fischer, One-forms on spaces of embeddings: A framework for constitutive laws in 

elasticity, Note Mat. XI (1991) 2148. 
[ 71 E. Binz. M. de Leon and D. Socolescu, On a differentiable geometric approach to the dynamics of media 

with microstructure I. preprint IMAFF-CSIC (1997). 
[S] F. Bloom, Modern Dfrerential Geometric Techniques in the Theory of Continuous Distributions qf 

Dislocations, Lecture Notes in Mathematics, Vol. 733 (Springer. Berlin, 1979). 
[9] G. Capriz, Corzrinua with Microstructure, Springer Tracts in Natural Philosophy, Vol. 35 (Springer. 

Berlin, 1989). 
[IO] E. Cartan, Oeuvrrs CompBfes (Gauthier-Villars. Paris. 1952-1955). 
[I I ] P. Chadwick. Continuum Mechanics (George Allen & Unwin, London, 1976). 
[ I21 D.S. Chandrasekharaiah and L. Debnath. Continuum Mechanics (Academic Press, Boston, 1994). 
[ 131 S.S. Chern, The geometry of G-structures, Bull. Amer. Math. Sot. 72 (1966) 167-219. 
[ I41 H. Cohen and M. Epstein, Remarks on uniformity in hyperelastic materials, Intemat. J. Solids Structures 

20 (3) (I 984) 233-243. 
[ I51 L.A. Cordero, C.T.J. Dodson and M. de Leon, D(ferentia/ Geometry of Frame Bundles. Mathematics 

and Its Applications (Kluwer Academic Publishers, Dordrecht, 1989). 
[ I61 E. Cosserat and F. Cosserat, Thtorie drs corps D@rmah/es (Hermann, Paris. 1909). 
[ I71 M. de Leon and M. Epstein, On the integrability of second order G-structures with applications to 

continuous theories of dislocations. Rep. Math. Phyn. 33 (3) (1993) 419436. 



168 M. Epstein, M. de Ledn/Journal of Geometry and Physics 26 (1998) 127-170 

[181 M. de Ledn and M. Epstein, Material bodies of higher grade, C. R. Acad. Sci. Paris S&r. I Math. 319 

[191 

WI 

[211 

r-4 

WI 

[241 

[251 

P61 

[271 

1281 

v91 

[301 

[311 

[321 

[331 

[341 

1351 

[361 

[371 

[381 

[391 

[401 

[411 

~421 

[431 

(1994) 615-620. - 
_ - 

M. de Le6n and M. Epstein, The geometry of uniformity in second-grade elasticity, Acta Mech. 114 (1) 
( 1996) 2 17-224. 
M. de Le6n and M. Epstein, Material bodies, elasticity and differential geometry. Proc. II Full Workshop 
on DifSerential Geometry and its Applications (Barcelona, September 1993) (Universitat PolitCcnica de 
Catalunya, 1994) pp. 47-54. 
M. de Ledn and E. Ortacgil, On frames defined by horizontal spaces, Czechoslovak Math. J. 46 (121) 
2 (1996) 241-248. 
M. de Le6n, A geometrical description of media with microstructure: Uniformity and homogeneity. 
Internal Seminar on Geometry, Continua and Microstructure, Travaux en Cours (Hermann, Paris). 
Ch. Ehresmann, Introduction g la thCorie des structures infinittsimales et des pseudogroupes de Lie, 
Colloque de Topologie Gt!ome’trie Diff~rentielle (Strasbourg, 1953) pp. 97-100. 
Ch. Ehresmann. Extension du calcul des jets aux jets non holonomes, C. R. Acad. Sci. Paris Str. 1 Math. 
239 (1954) 1762-1764. 
Ch. Ehresmann. Applications de la notion de jet non holonome, C. R. Acad. Sci. Paris Str. I Math. 240 
(1955) 397-399. 
Ch. Ehresmann, Les prolongements d’un espace fibrC diffkrentiable, C. R. Acad. Sci. Paris SCr. I Math. 
240 (1955) 1755-1757. 
Ch. Ehresmann, Connexions d’ordre supCrieur,Atri VCongresso de1 Unione Mat. It. (Cremonese, Roma, 
1956) 344-346. 
Ch. Ehresmann, Sur les pseudo-groupes de Lie de type finite, C. R. Acad. Sci. Paris Str. I. Math. 246 
(1958) 360-362. 
Ch. Ehresmann, Catigories topologiques et catCgories diffirentiables, Colloq. G&om&-ie DiJZrentielle 
Globule (Bruxelles, 1958) (Louvain, 1959) pp. 137-150. 
M. Elzanowski, Mathematical Theory of Uniform Elastic Structures, Monografie, Politechnika 
Swietokrzyska (Kielce, 1995). 
M. Elzanowski, M. Epstein and J. Sniatycki, G-structures and material homogeneity, J. Elasticity 23 
(1990) 167-180. 
M. Elzanowski and M. Epstein, On the symmetry group of second-grade materials, Intemat. J. Non- 
Linear Mech. 27 (4) (1992) 635-638. 
M. Elzanowski and S. Prishepionok, Locally homogeneous configurations of uniform elastic bodies. 
Rep. Math. Phys. 3 1 (1992) 229-240. 
M. Elzanowski and S. Prishepionok, Connections on higher order frame bundles, Proc. Colloquium on 
DifSerentiul Geometry (Debrecen, Hungary, 1994) pp. 25-30. 
M. Elzanowski and S. Prishepionok, Higher grade material structures, preprint, Portland State University 
(1994). 
M. Epstein and M. de Le6n, The differential geometry of cosserat media, in: New Developments in 
Deferential Geometr?, (Debrecen, 1994), Mathematics and its Application, Vol. 350 (Kluwer Academic 
Publishers, Dordrecht, 1996) pp. 143-164. 
M. Epstein and M. de Le6n, Dislocaciones distribuidas en medios ehisticos, Actas de1 XI Congreso 
National de Ingenieria Mecdnica (Valencia, Noviembre 1994) Anales de Ingenietia MecBnica 10 (2) 
(1994) 577-583. 
M. Epstein and M. de Le6n, Homogeneity conditions for generalized Cosserat media, J. Elasticity 43 
(1996) 189-201. 
M. Epstein and M. de Lebn, Differential geometry of continua with structure, Proc. 8th Internat. Symp. 
Continuum Models and Discrete Systems (Varna, Bulgaria, June 1995) (World Scientific, Singapore, 
1996) pp. 156-163. 
M. Epstein and M. de Le6n, Geometric characterization of the homogeneity of continua with 
microstructure, Proc. 3 Meeting on Current Ideas in Mechanics and Related Fields (Segovia, June 
1995). Extracta Mathematicae I I (I) (1996) 116-l 26. 
M. Epstein and M. de Le6n, Uniformity and homogeneity of elastic rods, shells and Cosserat three- 
dimensional bodies, Arch. Math. (Bmo) 32 (4) (1996) 267-280. 
M. Epstein and M. de Lebn, Uniformity and homogeneity of deformable surfaces, C. R. Acad. Sci. 
Paris, Strie IIb 323 (1996) 579-584. 
M. Epstein and M. de Le6n, On uniformity of shells, Intemat. J. Solids Strut. (1997). 



1441 

1451 

(461 

[471 

1481 

[491 

I501 

[511 

[521 
[531 

M. Epstein, M. de Lecin/Journal of Geometry and Physics 26 (1998) 127-170 169 

M. Epstein and G.A. Maugin, On the geometrical material structure of anelasticity, Acta Mech. 115 
(1995) 119-131. 
M. Epstein and R. Segev, Differentiable manifolds and the principle of virtual work in continuum 
mechanics, J. Math. Phys. 21 (5) (1980) 1243-l 245. 
J.L. Ericksen and C. Truesdell, Exact theory of stress and strain in rods and shells. Arch. Rational Mech. 
Anal. 1 (1958) 296323. 
A.C. Eringen and Ch.B. Kafadar, in: Polar Field Theories, ed. A. Cemal Eringen, Continuum Physics, 
Vol. IV, Part I (Academic Press, New York, 1976) pp. l-73. 
J.D. Eshelby, The force of an elastic singularity. Phil. Trans. Roy. Sot. London Ser. A 244 (1951) 
87-l 12. 
A. Fujimoto, Theor?; of G-structures, Publications of the Study Group of Geometry, Vol. I (Tokyo, 
1972). 
M. Golubitsky and V. Guillemin, Stuhle Muppings and Their Singularities, GTM, Vol. 14 (Springer, 
Berlin, 1973). 
S. Kobayashi and K. Nomizu, Foundations ofD@erential Geometry, Vol. I (Interscience, New York, 
1963). 
S. Kobayashi, Transformations Groups in Dtrerential Geometry (Springer, Berlin, 1972). 
I. Kolai-, Generalized G-structures and G-structures of higher order, Boll. Un. Mat. Ital. (4) 12 (3) 
(Suppl.) (1975) 245-256. 

[54] I. Kolai, P.W. Michor and J. Slovak. Natural Operations in DifSerential Geometry (Springer, Berlin, 
1993). 

[55] K. Kondo, Geomet? of Elastic Deformation and Incompatibility, Memoirs of the Unifying Study of the 
Basic Problems in Engineering Sciences by Means of Geometry (Tokyo Gakujutsu Benken Fukyu-Kai, 
IC. 1955). 

1561 E. Kroner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rational 
Mech. Anal. 4 (1960) 273-334. 

1571 E. Kroner, Mechanics of Generaked Continua, Proc. IUTAM Symp. (Fredenstadt-Stuttgart, 1967) 
(Springer, Berlin, 1967). 

[58] R. Lardner, Mathematical Theory of Dislocations and Fructure, Mathematical Expoxitions, Vol. 17 
(University of Toronto Press, Toronto, 1974). 

[59] P. Libermann, Sur la geometric des prolongements des spaces fib& vectoriels, Ann. Inst. Fourier I4 
(1) (1964) 145-172. 

[60] P. Libermann, Surconnexions et connexions affines speciales, C. R. Acad. SC. Paris SCr I Math. 261 
(1965) 2801-2804. 

16 I] P. Libermann, Connexions d’ordre superieur et tenseur de structure, Atti de1 Convegno Int. di Geometria 
Djfferenziale, ed. Zanichelli (Bologna, September 1967) pp. l-18. 

1621 l? Libermann, Sur les groupoydes differentiables et le presque parallelisme, Instituto Nazionale di Alta 
Matematica, Sympos. Math. X (1972) 59-93. 

[63] P. Libermann, Paralltlismes, J. Differential Geometry 8 (1973) 51 l-539. 
[64] K. Mackenzie, Liegroupoids andLie algebroids in Differential Geometry, London Mathematical Society 

Lecture Note Series, Vol. I24 (Cambridge University Press, Cambridge, 1987). 
1651 J.E. Marsden, Lectures on Geomefric Methods in Mathematical Physics, CBMS-NSF Regional 

Conference Series in Applied Mathematics (SIAM, Philadelphia, 1981). 
[661 J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity (Prentice Hall, Englewood, 

NJ, 1983). 
1671 G.A. Maugin, The method of virtual power in continuum mechanics-applications to coupled fields, Acta 

Mech. 30 (1980) l-70. 
[68] G.A. Maugin, Material lnhomogeneities in Elasticity (Chapman & Hall, London, 1993). 
1691 G.A. Maugin, On the Structure ofthe Theory of Polar Elasticity (Phil. Trans. Roy. Sot., London, 1997). 
[70] P. Molino, Theorie des G-Structures: Le Prohleme d’Equivalence, Lecture Notes in Mathematics, 

Vol. 588 (Springer, Berlin, 1977). 
[71 I S.A. Morris. Pontryuguin Duality and the Structure of Locally Compact Abelian Groups, London 

Mathematical Society Lecture Note Series, Vol. 29 (Cambridge University Press, Cambridge. 1977). 
[72] F.R. Nabarro. Theory of Crystal Dislocafions (Dover, New York, 1987). 
[73] W. Noll, Materially uniform simple bodies with inhomogeneities, Arch. Rational Mech. Anal. 27 (1967) 

l-32. 



170 M. Epstein, M. de L&n/Journal of Geometry and Physics 26 (1998) 127-170 

1741 W. Nowacki, Theory of Asymetric Elasficity (Pergamon, Oxford and PWW. Warsaw, 1986). 
[75] V. Oproiu, Connections in the semiholonomic frame bundle of second order, Rev. Roum. Math. Pures 

et Appl. XIV (5) (1969) 66 l-672. 
[76] J.F. Pommaret. Lie Pseudogroups and Mechanics, Mathematics and Its Applications (Gordon and 

Breach, New York, 1988). 
(771 A. Roux, Jef et connexions (Publ. Dep. de Mathtmatiques, Lyon. 1975). 
[78] M. Salgado, Sobre la geometria diferencial de1 hbrado de referencias de orden 2, Tesis doctoral, Publ. 

Dept. Geometria y Topologia, 63, Univ. Santiago de Compostela (I 984). 
[79] S. Sternberg. Lectures on Diflerential Geometry, 2nd Ed. (Chelsea. New York, 1983). 
[80] R.A. Toupin, Elastic materials with couple-stresses, Arch. Rational Mech. Anal. 11 (1962) 385414. 
[8l] R.A. Toupin, Theories of elasticity with couple-stress. Arch. Rational Mech. Anal. 17 (1964) 85-l 12. 
[82] C. Truesdell and R.A. Toupin. Principles of Classical Mechanics and Field Theop, Handbuch der 

Physik, Vol. III/I (Springer, Berlin, 1960). 
[83] C. Truesdell and W. Nell, The Non-Linear Field Theories of Mechanics, Handbuch der Physik, 

Vol. III/3 (Springer, Berlin, 1965). 
[84] C.C. Wang and C. Truesdell, Introduction to Rntional Hastic@ (Noordhoff, Leyden. 1973). 
1851 CC. Wang, On the geometric structures of simple bodies, a mathematical foundation for the theory of 

continuous distributions of dislocations, Arch. Rational Mech. Anal. 27 (1967) 33-94. 
[86] PCh. Yuen, Higher order frames and linear connections, Cahiers de Topologie et Gtometrie 

Differentielle XII 3 (I 97 1) 333-37 I. 


